×

Fisher-Rao geometry and Jeffreys prior for Pareto distribution. (English) Zbl 07533640

Summary: In this paper, we investigate the Fisher-Rao geometry of the two-parameter family of Pareto distribution. We prove that its geometrical structure is isometric to the Poincaré upper half-plane model, and then study the corresponding geometrical features by presenting explicit expressions for connection, curvature and geodesics. It is then applied to Bayesian inference by considering the Jeffreys prior determined by the volume form. In addition, the posterior distribution from the prior is computed, providing a systematic method to the Bayesian inference for Pareto distribution.

MSC:

62-XX Statistics

References:

[1] Amari, S., Differential-geometrical methods in statistics (1985), New York: Springer, New York · Zbl 0559.62001
[2] Amari, S.; Nagaoka, H., Methods of information geometry (2007), Providence, RI: American Mathematical Society
[3] Arnold, B. C., Pareto distributions (1983), Fairland: International Cooperative Publishing House, Fairland · Zbl 1169.62307
[4] Arnold, B. C.; Press, S. J., Bayesian inference for Pareto populations, Journal of Econometrics, 21, 3, 287-306 (1983) · Zbl 0503.62027 · doi:10.1016/0304-4076(83)90047-7
[5] Arnold, B. C.; Press, S. J., Bayesian estimation and prediction for Pareto data, Journal of the American Statistical Association, 84, 408, 1079-84 (1989) · Zbl 0702.62026 · doi:10.1080/01621459.1989.10478875
[6] Cao, L.; Sun, H.; Wang, X., The geometric structures of the Weibull distribution manifold and the generalized exponential distribution manifold, Tamkang Journal of Mathematics, 39, 1, 45-52 (2008) · Zbl 1143.53312 · doi:10.5556/j.tkjm.39.2008.44
[7] Cartan, E., Oeuvres complètes (1952), Paris: Gauthier-Villars, Paris · Zbl 0049.30303
[8] Casella, G.; Berger, R. L., Statistical inference (2001), Pacific Grove, CA: Duxbury Press
[9] DeGroot, M. H.; Schervish, M. J., Probability and statistics (2012), Boston, MA: Pearson Education, Inc
[10] Efron, B., Defining the curvature of a statistical problem (with applications to second order efficiency) (with discussion), The Annals of Statistics, 3, 6, 1189-242 (1975) · Zbl 0321.62013 · doi:10.1214/aos/1176343282
[11] Fisher, R. A., On the mathematical foundations of theoretical statistics, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222, 309-68 (1922) · JFM 48.1280.02
[12] Jeffreys, H., An invariant form for the prior probability in estimation problems, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 186, 1007, 453-61 (1946) · Zbl 0063.03050 · doi:10.1098/rspa.1946.0056
[13] Jost, J., Compact Riemann surfaces: An introduction to contemporary mathematics (2006), Berlin: Springer · Zbl 1125.30033
[14] Kim, D. H.; Kang, S. G.; Lee, W. D., Noninformative priors for Pareto distribution, Journal of the Korean Data & Information Science Society, 20, 1213-23 (2009)
[15] Peng, L.; Zhang, Z., Statistical Einstein manifolds of exponential families with group-invariant potential functions, Journal of Mathematical Analysis and Applications, 479, 2, 2104-18 (2019) · Zbl 1426.62403 · doi:10.1016/j.jmaa.2019.07.043
[16] Peng, L.; Sun, H.; Jiu, L., The geometric structure of the Pareto distribution, Boletín de la Asociación Matemática Venezolana, 14, 5-13 (2007) · Zbl 1158.53009
[17] Petersen, P., Riemannian geometry (2006), New York: Springer-Verlag · Zbl 1220.53002
[18] Rao, C. R., Information and accuracy attainable in the estimation of statistical parameters, Bulletin of the Calcutta Mathematical Society, 37, 81-91 (1945) · Zbl 0063.06420
[19] Rylov, A., Constant curvature connections on the Pareto statistical model, Izv. PGPU Belinskogo, 30, 155-63 (2012)
[20] Stahl, S., The Poincaré half-plane: A gateway to modern geometry (1993), London: Jones & Bartlett Learning · Zbl 0771.51001
[21] Sun, H.; Zhang, Z.; Peng, L.; Duan, X., An elementary introduction to information geometry (2016), Beijing: Science Press, Beijing
[22] Tu, L. W., Differential geometry: Connections, curvature, and characteristic classes (2017), New York: Springer, New York · Zbl 1383.53001
[23] Zipf, G. K., Human behavior and the principle of least effort (1949), Cambridge, MA: Addison-Wesley, Cambridge, MA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.