×

On the combinatorics of the universal enveloping algebra \(\widehat{U}_h(\mathfrak{sl}_2)\). (English) Zbl 1505.17010

Summary: Using combinatorial methods we study the structural coefficients of the formal homogeneous universal enveloping algebra \(\widehat{U}_h(\mathfrak{sl}_2) \) of the special linear algebra \( \mathfrak{sl}_2\) over a characteristic zero field. We provide explicit formulae for the product of generic elements in \( \widehat{U}_h(\mathfrak{sl}_2)\), and construct combinatorial objects giving flesh to these formulae; in particular, we provide explicit formulae and combinatorial interpretations for the structural coefficients of divided power Poincaré-Birkhoff-Witt basis.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16S30 Universal enveloping algebras of Lie algebras
05A19 Combinatorial identities, bijective combinatorics

References:

[1] Baker, A.: Matrix Groups: An Introduction to Lie Group Theory. Springer, London (2002) · Zbl 1009.22001 · doi:10.1007/978-1-4471-0183-3
[2] Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-Like Structures. Cambridge University Press, Cambridge (1998) · Zbl 0888.05001
[3] Bergeron, N., Lam, T., Li, H.: Combinatorial Hopf algebras and towers of algebras—dimension, quantization and functorality. Algebr. Represent. Theory 15, 675-696 (2012) · Zbl 1281.16036 · doi:10.1007/s10468-010-9258-y
[4] Blandin, H., Díaz, R.: Rational combinatorics. Adv. Appl. Math. 40, 107-126 (2008) · Zbl 1134.05006 · doi:10.1016/j.aam.2006.12.006
[5] Castillo, E., Díaz, R.: Rota-Baxter categories. Int. Electron. J. Algebra 5, 27-57 (2009) · Zbl 1162.18303
[6] Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge Univ. Press, Cambridge (1994) · Zbl 0839.17009
[7] Cheng, R., Jackson, D., Stanley, G.: Combinatorial Aspects of the Quantized Universal Enveloping Algebra of \(sl_{n+1}({\mathbb{C}})\), preprint, http://arxiv.org/abs/1601.01377 · Zbl 1403.05163
[8] Díaz, R., Pariguan, E.: Graphical introduction to classical Lie algebras. Bol. Asoc. Mat. Venez. 12, 185-216 (2005) · Zbl 1147.17302
[9] Díaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer \(k\)-symbol. Divulg. Mat. 15, 179-192 (2007) · Zbl 1163.33300
[10] Díaz, R., Pariguan, E.: Super, quantum and non-commutative species. Afr. Diaspora J. Math. 8, 90-130 (2009) · Zbl 1239.16001
[11] Díaz, R., Pariguan, E.: Symmetric quantum Weyl algebras. Ann. Math. Blaise Pascal 11, 187-203 (2010) · Zbl 1136.17304 · doi:10.5802/ambp.192
[12] Dixmier, J.: Enveloping Algebras. North-Holland, Amsterdam (1977) · Zbl 0346.17010
[13] Erdmann, K., Wildon, M.: Introduction to Lie Algebras. Springer, London (2006) · Zbl 1139.17001 · doi:10.1007/1-84628-490-2
[14] Fulton, W., Harris, J.: Representation Theory. Springer, New York (1991) · Zbl 0744.22001
[15] Grinberg, D., Reiner, V.: Hopf Algebras in Combinatorics, preprint. arXiv:1409.8356
[16] Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Springer, New York (1972) · Zbl 0254.17004 · doi:10.1007/978-1-4612-6398-2
[17] Jacobson, N.: Lie Algebras. Interscience, New York (1962) · Zbl 0121.27504
[18] Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1-82 (1981) · Zbl 0491.05007 · doi:10.1016/0001-8708(81)90052-9
[19] Joyal, A.: Foncteurs analytiques et espéces de structures. In: Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, pp. 126-159. Springer, Berlin (1986) · Zbl 0612.18002
[20] Kac, V.: Infinite dimensional Lie algebras. Cambridge University Press, Cambridge (1990) · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[21] Kassel, C.: Quantum Groups. Springer, New York (1995) · Zbl 0808.17003 · doi:10.1007/978-1-4612-0783-2
[22] Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157-216 (2003) · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[23] Kung, J. (ed.): Gian-Carlo Rota on Combinatorics. Birkhäuser, Boston (1995) · Zbl 0841.01031
[24] Laplaza, M.: A new result of coherence for distributivity. In: Coherence in Categories, Lecture Notes in Mathematics, vol. 281, pp. 214-235. Springer, Berlin (1972) · Zbl 0244.18011
[25] Laplaza, M.: Coherence for distributivity. In: Coherence in Categories, Lecture Notes in Mathematics, vol. 281, pp. 29-65. Springer, Berlin (1972) · Zbl 0244.18010
[26] Loday, J.-L., Ronco, M.: Combinatorial Hopf algebras. In: Quanta of Maths, Clay Mathematics Proceedings, vol. 11, pp. 347-383. Amer. Math. Soc., Providence (2011) · Zbl 1217.16033
[27] Mubeen, S., Rehman, A.: A note on \(k\)-Gamma function and Pochhammer \(k\)-symbol. J. Inform. Math. Sci. 6, 93-107 (2014)
[28] Poincaré, H.: Sur les groupes continus. Trans. Camb. Philos. Soc. 18, 220255 (1900) · JFM 31.0386.01
[29] Shepler, A.; Witherspoon, S.; Eisenbud, D. (ed.); Iyengar, S. (ed.); Singh, A. (ed.); Stafford, J. (ed.); Bergh, M. (ed.), PoincaréBirkhoffWitt theorems, No. 67 (2015), Berkeley
[30] Schmid, W.: Hopf algebras in combinatorics. Can. J. Math. 45, 412-428 (1993) · Zbl 0781.16026 · doi:10.4153/CJM-1993-021-5
[31] Ton-That, T., Tran, T.-D.: Revue dhistoire des mathématiques 5, 249-284 (1999) · Zbl 0958.01012
[32] Varadarajan, V.: Lie Groups, Lie Algebras, and their Representations. Springer, Berlin (1974) · Zbl 0371.22001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.