×

The FFTRR-based fast direct algorithms for complex inhomogeneous biharmonic problems with applications to incompressible flows. (English) Zbl 1377.65035

The authors develop the fast Fourier transform (FFT) and recursive-relations based accurate and fast algorithms for several biharmonic problems in a unit disc in the complex plane using the direct method, where the solutions of the biharmonic problems are written directly in terms of Green’s function of these problems. These algorithms are implemented using MATLAB programs. Their performance in terms of accuracy and complexity is numerically evaluated and presented using several test problems. These fast algorithms are applied to solving incompressible slow viscous flow problems at low to moderate Reynolds numbers.

MSC:

65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
76D07 Stokes and related (Oseen, etc.) flows

Software:

Matlab
Full Text: DOI

References:

[1] Andersson, L-E., Elfving, T., Golub, G.: Solution of biharmonic equations with application to radar imaging. J. Comput. Appl. Math. 94(2), 153-180 (1998) · Zbl 0933.65128 · doi:10.1016/S0377-0427(98)00079-X
[2] Badea, L., Daripa, P.: A fast algorithm for two-dimensional elliptic problems. Numer. Algorithms. 30(3-4), 199-239 (2002) · Zbl 1079.65123 · doi:10.1023/A:1020176803736
[3] Begehr, H.: Boundary value problems in complex analysis. II. Bol. Asoc. Mat. Venez. 12(2), 217-250 (2005) · Zbl 1116.30032
[4] Begehr, H.: Dirichlet problems for the biharmonic equation. Gen. Math. 13 (2), 65-72 (2005) · Zbl 1136.31001
[5] Begehr, H.: Biharmonic Green functions. Matematiche (Catania) 61(2), 395-405 (2006) · Zbl 1135.31001
[6] Begehr, H., Tutschke, W.: Six biharmonic Dirichlet problems in complex analysis. In: Son, L.H. (ed.) Function Spaces in Complex and Clifford Analysis, pp 243-252. Natl. Univ. Publ., Hanoi (2008) · Zbl 1157.31002
[7] Ben-Artzi, M., Chorev, I., Croisille, J.P., Fishelov, D.: A compact difference scheme for the biharmonic equation in planar irregular domains. SIAM J. Numer. Anal. 47(4), 3087-3108 (2009) · Zbl 1202.65138 · doi:10.1137/080718784
[8] Bjorstad, P.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM. J. Numer. Anal. 20, 626-668 (1983) · Zbl 0561.65077 · doi:10.1137/0720004
[9] Borges, L., Daripa, P.: A parallel version of a fast algorithm for singular integral transforms. Numer. Algorithms. 23(1), 71-96 (2000) · Zbl 0948.65142 · doi:10.1023/A:1019143832124
[10] Borges, L., Daripa, P.: A fast parallel algorithm for the Poisson equation on a disk. J. Comput. Phys. 169(1), 151-192 (2001) · Zbl 0980.65133 · doi:10.1006/jcph.2001.6720
[11] Braess, D., Peisker, P.: On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning. IMA J. Numer. Anal. 6(4), 393-404 (1986) · Zbl 0616.65108 · doi:10.1093/imanum/6.4.393
[12] Cheng, X., Han, W., Huang, H.: Some mixed finite element methods for biharmonic equation. J. Comput. Appl. Math. 126(1-2), 91-109 (2000) · Zbl 0973.65098 · doi:10.1016/S0377-0427(99)00342-8
[13] Daripa, P.: A fast algorithm to solve nonhomogeneous Cauchy-Riemann equations in the complex plane. SIAM J. Sci. Statist. Comput. 13(6), 1418-1432 (1992) · Zbl 0762.65013 · doi:10.1137/0913080
[14] Daripa, P.: A fast algorithm to solve the Beltrami equation with applications to quasiconformal mappings. J. Comput. Phys. 106(2), 355-365 (1993) · Zbl 0777.65010 · doi:10.1016/S0021-9991(83)71113-7
[15] Daripa, P., Mashat, D.: Singular integral transforms and fast numerical algorithms. Numer. Algorithms. 18(2), 133-157 (1998) · Zbl 0916.65127 · doi:10.1023/A:1019117414918
[16] Dennis, S.C.R.: Numerical methods in fluid dynamics. Proc. 4th Int. Conf. Numer. Methods Fluid Dyn. 4(0), 138-143 (1974)
[17] Ghosh, A., Daripa, P.: The FFTRR-based fast decomposition methods for solving complex biharmonic problems and incompressible flows. IMA J. Numer. Anal. 36(2), 824-850 (2015) · Zbl 1433.65364 · doi:10.1093/imanum/drv033
[18] Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Phys. D. 60(1-4), 216-225 (1992). Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991) · Zbl 0824.65117 · doi:10.1016/0167-2789(92)90238-I
[19] Greengard, L., Kropinski, M.: An integral equation approach to the incompressible Navier-Stokes equations in two dimensions. SIAM J. Sci. Comput. 20 (1), 318-336 (1998) · Zbl 0917.35094 · doi:10.1137/S1064827597317648
[20] Greengard, L., Kropinski, M., Mayo, A.: Integral equation methods for Stokes flow and isotropic elasticity in the plane. J. Comput. Phys. 125(2), 403-414 (1996) · Zbl 0847.76066 · doi:10.1006/jcph.1996.0102
[21] Guazzelli, E., Morris, J.F.: A Physical Introduction to Suspension Dynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2012) · Zbl 1426.76003
[22] Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34(4), 1331-1356 (1997) · Zbl 0891.65019 · doi:10.1137/S0036142995287847
[23] Kuwahara, K., Imai, I.: Steady viscous flow within a circular boundary. Phys. Fluids. 12(2), 94-101 (1969) · Zbl 0201.29303
[24] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover Press. reprinted (1994) (1927) · JFM 53.0752.01
[25] Lurie, S.A., Vasiliev, V.V.: The Biharmonic Problem in the Theory of Elasticity. Gordon and Breach Publishers, Luxembourg (1995) · Zbl 0924.73007
[26] Mabey, D.G.: Fluid dynamics. J.Roy. Aero.Soc. 61(2), 181-198 (1957)
[27] Mayo, A.: The rapid evaluation of volume integrals of potential theory on general regions. J. Comput. Phys. 100(2), 236-245 (1992) · Zbl 0772.65012 · doi:10.1016/0021-9991(92)90231-M
[28] Mills, R.D.: Computing internal viscous flow problems for the circle by integral methods. J. Fluid Mech. 79(3), 609-624 (1977) · Zbl 0373.76033 · doi:10.1017/S0022112077000342
[29] Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24(4), 737-749 (1987) · Zbl 0632.65112 · doi:10.1137/0724048
[30] Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, 3rd (and revised) ed., English translation. Springer (1977) · Zbl 0616.65108
[31] Pandit, S.K.: On the use of compact streamfunction-velocity formulation of steady Navier-Stokes equations on geometries beyond rectangular. J. Sci. Comput. 36(2), 219-242 (2008) · Zbl 1203.65224 · doi:10.1007/s10915-008-9186-8
[32] Peisker, P.: On the numerical solution of the first biharmonic equation. RAIRO Modél Math. Anal. Numér. 22(4), 655-676 (1988) · Zbl 0661.65112 · doi:10.1051/m2an/1988220406551
[33] Rayleigh, L.: Fluid dynamics. Phil. Mag. 5(5), 354-363 (1893) · doi:10.1080/14786449308620489
[34] Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput. 3(2), 201-231 (1988) · Zbl 0662.65122 · doi:10.1007/BF01061258
[35] Wang, Z., Wei, X., Gao, X.: Solution of the plane stress problems of strain-hardening materials described by power-law using the complex pseudo-stress function. Appl. Math. Mech. 12(5), 481-492 (1991) · Zbl 0917.73022 · doi:10.1007/BF02019593
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.