×

Non-resonant Fredholm alternative and anti-maximum principle for the fractional \(p\)-Laplacian. (English) Zbl 1366.35216

Summary: In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional \(p\)-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional \(p\)-Laplacian. The second result is the anti-maximum principle for the fractional \(p\)-Laplacian.

MSC:

35R11 Fractional partial differential equations
47G20 Integro-differential operators
45G05 Singular nonlinear integral equations

References:

[1] Adams, R.A.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975) · Zbl 0314.46030
[2] Amghibech, S.: On the discrete version of Picone’s identity. Discrete Appl. Math. 156(1), 1-10 (2008) · Zbl 1126.05067 · doi:10.1016/j.dam.2007.05.013
[3] Anane, A.: Simplicité et isolation de la première valeur propre du \[p\] p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305(16), 725-728 (1987) · Zbl 0633.35061
[4] Anane, A., Gossez, J.: Strongly nonlinear elliptic problems near resonance: a variational approach. Commun. Partial Differ. Equ. 15(8), 1141-1159 (1990) · Zbl 0715.35029 · doi:10.1080/03605309908820717
[5] Anane, A., Tsouli, N.: On a nonresonance condition between the first and the second eigenvalues for the \[p\] p -Laplacian. Int. J. Math. Math. Sci. 26(10), 625-634 (2001) · Zbl 1010.35046 · doi:10.1155/S0161171201004628
[6] Anane, A., Tsouli, N.: On a nonresonance condition between the first and the second eigenvalue for the \[p\] p-Laplacian. Math. Rech. Appl. 6, 101-114 (2004) · Zbl 1200.35140
[7] Arcoya, D., Colorado, E., Leonori, T.: Asymptotically linear problems and antimaximum principle for the square root of the Laplacian. Adv. Nonlinear Stud. 12(4), 683-701 (2012) · Zbl 1336.35352 · doi:10.1515/ans-2012-0402
[8] Arcoya, D., Gámez, J.L.: Bifurcation theory and related problems: anti-maximum principle and resonance. Commun. Partial Differ. Equ. 26(9-10), 1879-1911 (2001) · Zbl 1086.35010 · doi:10.1081/PDE-100107462
[9] Arcoya, D., Orsina, L.: Landesman-Lazer conditions and quasilinear elliptic equations. Nonlinear Anal. 28(10), 1623-1632 (1997) · Zbl 0871.35037 · doi:10.1016/S0362-546X(96)00022-3
[10] Arias, M., Campos, J., Gossez, J.-P.: On the antimaximum principle and the Fučik spectrum for the Neumann \[p\] p-Laplacian. Differ. Integral Equ. 13(1-3), 217-226 (2000) · Zbl 0979.35048
[11] Armstrong, S.N.: Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations. J. Differ. Equ. 246(7), 2958-2987 (2009) · Zbl 1171.35093 · doi:10.1016/j.jde.2008.10.026
[12] Birindelli, I.: Hopf’s lemma and anti-maximum principle in general domains. J. Differ. Equ. 119(2), 450-472 (1995) · Zbl 0831.35114 · doi:10.1006/jdeq.1995.1098
[13] Boccardo, L., Drábek, P., Giachetti, D., Kučera, M.: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. 10, 1083-1103 (1986) · Zbl 0623.34031 · doi:10.1016/0362-546X(86)90091-X
[14] Bourgain, J., Brezis, H., Mironescu, P.: Another look at sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (Eds.) Optimal Control and Partial Differential Equations, A Volume in Honour of A. Bensoussan’s 60th Birthday, pp. 439-455. IOS Press (2001) · Zbl 1103.46310
[15] Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37(3), 769-799 (2014) · Zbl 1315.47054 · doi:10.2996/kmj/1414674621
[16] Brasco, L., Parini, E.: The second eigenvalue of the fractional \[p\] p-Laplacian. Adv. Calc. Var. 9(4), 323-355 (2016) · Zbl 1349.35263 · doi:10.1515/acv-2015-0007
[17] Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional \[p\] p-Laplacian. Discrete Contin. Dyn. Syst. 36(4), 1813-1845 (2016) · Zbl 1336.35270 · doi:10.3934/dcds.2016.36.1813
[18] Clément, Ph, Peletier, L.A.: An anti-maximum principle for second-order elliptic operators. J. Differ. Equ. 34(2), 218-229 (1979) · Zbl 0387.35025 · doi:10.1016/0022-0396(79)90006-8
[19] Cuesta, M., de Figueiredo, D., Gossez, J.-P.: The beginning of the Fučik spectrum for the \[p\] p-Laplacian. J. Differ. Equ. 159(1), 212-238 (1999) · Zbl 0947.35068 · doi:10.1006/jdeq.1999.3645
[20] Del Pezzo, L.M., Fernández Bonder, J., López Ros, L.: An optimization problem for the first eigenvalue of the p-fractional Laplacian. arXiv:1601.03019 · Zbl 1392.35166
[21] Del Pezzo, L.M., Quaas, A.: Global bifurcation for fractional \[p\] p-Laplacian and application. Z. Anal. Anwend. 35(4), 411-447 (2016) · Zbl 1351.35247 · doi:10.4171/ZAA/1572
[22] Del Pezzo, L.M., Quaas, A.: A Hopf’s lemma and a strong minimum principle for the fractional \[p\] p-Laplacian. arXiv:1609.04725 · Zbl 1362.35061
[23] del Pino, M., Drábek, P., Manásevich, R.: The Fredholm alternative at the first eigenvalue for the one-dimensional \[p\] p-Laplacian. J. Differ. Equ. 151(2), 386-419 (1999) · Zbl 0931.34065 · doi:10.1006/jdeq.1998.3506
[24] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985) · Zbl 0559.47040 · doi:10.1007/978-3-662-00547-7
[25] Demengel, F., Demengel, G.: Functional spaces for the theory of elliptic partial differential equations. Universitext, Springer, London (2012) (Translated from the 2007 French original by Reinie Erné) · Zbl 1239.46001
[26] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[27] Dolph, C.L.: Nonlinear integral equations of the Hammerstein type. Trans. Am. Math. Soc. 66, 289-307 (1949) · Zbl 0036.20202 · doi:10.1090/S0002-9947-1949-0032923-4
[28] Drábek, P.: The \[p\] p-Laplacian-Mascot of nonlinear analysis. Acta Math. Univ. Comenian. (N.S.) 76(1), 85-98 (2007) · Zbl 1136.35043
[29] Drábek, P., Girg, P., Takáč, P., Ulm, M.: The Fredholm alternative for the \[p\] p-Laplacian: bifurcation from infinity, existence and multiplicity. Indiana Univ. Math. J. 53(2), 433-482 (2004) · Zbl 1081.35031 · doi:10.1512/iumj.2004.53.2396
[30] Drábek, P., Girg, P., Manásevich, R.: Generic Fredholm alternative-type results for the one dimensional \[p\] p-Laplacian. NoDEA Nonlinear Differ. Equ. Appl. 8(3), 285-298 (2001) · Zbl 1045.34004 · doi:10.1007/PL00001449
[31] Drábek, P., Takáč, P.: A counterexample to the Fredholm alternative for the \[p\] p-Laplacian. Proc. Am. Math. Soc. 127(4), 1079-1087 (1999) · Zbl 0917.34014 · doi:10.1090/S0002-9939-99-05195-3
[32] Fleckinger, J., Gossez, J.-P., Takáč, P.: François de Thélin, existence, nonexistence et principe de l’antimaximum pour le \[p\] p-Laplacien. C. R. Acad. Sci. Paris Sér. I Math. 321(6), 731-734 (1995) · Zbl 0840.35016
[33] Franzina, G., Palatucci, G.: Fractional \[p\] p-eigenvalues. Riv. Math. Univ. Parma (N.S.) 5(2), 373-386 (2014) · Zbl 1327.35286
[34] García-Melián, J., Rossi, J.D.: Maximum and antimaximum principles for some nonlocal diffusion operators. Nonlinear Anal. 71(12), 6116-6121 (2009) · Zbl 1185.45005 · doi:10.1016/j.na.2009.06.004
[35] Godoy, T., Gossez, J.-P., Paczka, S.: On the antimaximum principle for the \[p\] p-Laplacian with indefinite weight. Nonlinear Anal. 51(3), 449-467 (2002) · Zbl 1157.35445 · doi:10.1016/S0362-546X(01)00839-2
[36] Gossez, J.-P.: Sur le principe de l’antimaximum. Cahiers Centre Études Rech. Opér. 36, 183-187 (1994) (Hommage à Simone Huyberechts) · Zbl 0847.35021
[37] Greco, A., Servadei, R.: Hopf’s lemma and constrained radial symmetry for the fractional Laplacian. (English summary). Math. Res. Lett. 23(3), 863-885 (2016) · Zbl 1361.35195 · doi:10.4310/MRL.2016.v23.n3.a14
[38] Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985) · Zbl 0695.35060
[39] Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \[p\] p-Laplacian. Revista Matemática Iberoamericana (2014) (To appear) · Zbl 1433.35447
[40] Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49(1-2), 795-826 (2014) · Zbl 1292.35193 · doi:10.1007/s00526-013-0600-1
[41] Lindqvist, P.: On the equation \[{\rm div}\,(\vert \nabla u\vert^{p-2}\nabla u)+\lambda \vert u\vert^{p-2}u=0\] div(|∇u|p-2∇u)+λ|u|p-2u=0. Proc. Am. Math. Soc. 109(1), 157-164 (1990) · Zbl 0714.35029
[42] Lindqvist, P.: Addendum: “On the equation <InlineEquation ID=”IEq524“> <EquationSource Format=”TEX“>\[{\rm div}(\vert \nabla u\vert^{p-2}\nabla u)+\lambda \vert u\vert^{p-2}u=0\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mi mathvariant=”normal“>div <mo stretchy=”false“>( <mo stretchy=”false“>| <mi mathvariant=”normal“>∇u <mo stretchy=”false“>|p-2 <mi mathvariant=”normal“>∇u <mo stretchy=”false“>)+ <mi mathvariant=”italic“>λ <mo stretchy=”false“>|u <mo stretchy=”false“>|p-2u=0”. Proc. Am. Math. Soc. 116(2), 583-584 (1992) · Zbl 0787.35027
[43] Manásevich, R., Takáč, P.: On the Fredholm alternative for the \[p\] p-Laplacian in one dimension. Proc. Lond. Math. Soc. (3) 84(2), 324-342 (2002) · Zbl 1024.34010 · doi:10.1112/plms/84.2.324
[44] Parini, E.: Continuity of the variational eigenvalues of the \[p\] p-Laplacian with respect to \[p\] p. Bull. Aust. Math. Soc. 83(3), 376-381 (2011) · Zbl 1217.35130 · doi:10.1017/S000497271100205X
[45] Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures et Appl. (9) 101(3), 275-302 (2014) · Zbl 1285.35020 · doi:10.1016/j.matpur.2013.06.003
[46] Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105-2137 (2013) · Zbl 1303.35121
[47] Servadei, R., Valdinoci, E.: A Brezis-Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12(6), 2445-2464 (2013) · Zbl 1302.35413 · doi:10.3934/cpaa.2013.12.2445
[48] Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. Sect. A 144(4), 831-855 (2014) · Zbl 1304.35752 · doi:10.1017/S0308210512001783
[49] Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133-154 (2014) · Zbl 1292.35315 · doi:10.5565/PUBLMAT_58114_06
[50] Takáč, P.: On the Fredholm alternative for the \[p\] p-Laplacian at the first eigenvalue. Indiana Univ. Math. J. 51(1), 187-237 (2002) · Zbl 1035.35046 · doi:10.1512/iumj.2002.51.2156
[51] Takáč, P.: A variational approach to the Fredholm alternative for the \[p\] p-Laplacian near the first eigenvalue. J. Dyn. Differ. Equ. 18(3), 693-765 (2006) · Zbl 1207.35170 · doi:10.1007/s10884-006-9017-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.