×

Radical Banach algebras with weakly continuous multiplication. (English) Zbl 1543.46037

Let \(A\) be an associative complex algebra. By \(A^*\) we denote its algebraic dual and \(A'\subseteq A^*\) will denote a total subspace (i.e., separates the points of \(A\)). Whenever \(A\) is endowed with a Hausdorff locally convex topology, \(A'\) will be the topological dual of \(A\). The weak topology defined on \(A\) by \(A'\) will be denoted by \(\sigma(A,A')\). An element \(a\in A\) is said to be left quasi-invertible if there exists some \(b\in A\) such that \(ba-a-b=0\). The Jacobson radical of \(A\) is \(\mathrm{Rad}(A)=\{ a\in A:\lambda a+ax \text{ is left quasi-invertible for all } \lambda\in {\mathbb C},\, x\in A\}\). the algebra \(A\) is radical if \(\mathrm{Rad}(A)=A\).
Theorems 4 and 5 are the main results of the paper. The former says that a Banach algebra \(A\) is either finite-dimensional or has uncountably many closed ideals of finite codimension if the multiplication is continuous with respect to the \(\sigma(A, A')\) topology. Theorem 5 reads as follows. Let \(A\) be a radical algebra (without any topology) and let \(A'\) be a total subspace of \(A^*\). Then \((A, \sigma(A, A'))\) has continuous multiplication if, and only if, up to a topological isomorphism, it is a subalgebra of a product of finite-dimensional radical algebras.

MSC:

46J45 Radical Banach algebras
46H20 Structure, classification of topological algebras
46A20 Duality theory for topological vector spaces
Full Text: DOI

References:

[1] Akkar, M., Albrecht E., Oubbi, L.: A further characterization of finite dimensional Banach algebras. Preprint (1997), available at https://www.researchgate.net/profile/Lahbib-Oubbi
[2] Akkar, M.; Oubbi, L.; Oudadess, M., Some results on weakly topologized algebras, J. Univ. Kuwait (Sci.), 19, 1-8, 1992 · Zbl 0781.46033
[3] Bonsall, FF; Duncan, J., Complete Normed Algebras, 1973, Berlin: Springer-Verlag, Berlin · Zbl 0271.46039 · doi:10.1007/978-3-642-65669-9
[4] Chilana, AK, Topological algebras with a given dual, Proc. Amer. Math. Soc., 42, 192-197, 1974 · Zbl 0247.46060 · doi:10.1090/S0002-9939-1974-0328590-2
[5] Chilana, AK, Hypocontinuity multiplication in weak topologized algebras, Yokohama Math. J., 24, 1-2, 97-102, 1976 · Zbl 0364.46037
[6] Cochran, AC, Weak A-convex algebras, Proc. Amer. Math. Soc., 26, 73-77, 1970 · Zbl 0197.39804
[7] Kaplansky, I., Ring isomorphisms of Banach algebras, Can. J. Math., 6, 374-381, 1954 · Zbl 0058.10505 · doi:10.4153/CJM-1954-036-5
[8] Michael, E.A.: Locally multiplicatively convex topological algebras. Memoirs American Mathematical Society, vol. 11, (1952) · Zbl 0047.35502
[9] Oubbi, L.: M-convexity and a-convexity of polar algebra topologies. Math. Res. Appl. 5, 85-95 (2003) · Zbl 1106.46307
[10] Oubbi, L.: Weak topological algebras and P-algebra property. In: Proceedings of ICTAA 2008, Math. Stud. series 4, Estonian Math. Soc. pp. 73-79, (2008) · Zbl 1166.46027
[11] Palmer, T. W., Banach algebras and the general theory of *-algebras. Volume 1: Algebras and Banach Algebras, Cambridge University Press (1994). doi:10.1017/CBO9781107325777 · Zbl 0809.46052
[12] Rickart, CE, General Theory of Banach Algebras, 1960, Princeton: Van Nostrand Company, Princeton · Zbl 0095.09702
[13] Turovskii, YuV; Shulman, VS, Radicals in Banach Algebras and some problems in the theory of radical algebras, Funct. Anal. Appl., 35, 4, 312-314, 2001 · Zbl 1045.46033 · doi:10.1023/A:1013186826199
[14] Tylli, HO; Wirzenius, H., Closed ideals in the algebra of compact-by-approximable operators, J. Funct. Anal., 282, 4, 109328, 2022 · Zbl 1497.46016 · doi:10.1016/j.jfa.2021.109328
[15] Warner, S., Weakly topologized algebras, Proc. Amer. Math. Soc., 8, 314-316, 1957 · Zbl 0078.29202 · doi:10.1090/S0002-9939-1957-0084727-4
[16] Warner, S., Weak locally multiplicatively convex algebras, Pac. J. Math., 5, 1025-1032, 1955 · Zbl 0067.08701 · doi:10.2140/pjm.1955.5.1025
[17] Wojtynski, W., On the existence of closed two-sided ideals in radical Banach algebras with compact elements, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 26, 2, 109-113, 1978 · Zbl 0374.46039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.