×

Non-discrete \(k\)-order additivity of a set function and distorted measure. (English) Zbl 1522.28026

Summary: In this study, we generalize the concept of the \(k\)-order additivity of a set function. First, we discuss the Möbius transform for a non-discrete set function. Next, we generalize the definition of the \(k\)-order additivity of a set function using the Möbius transform and provide the equivalent conditions for the \(k\)-order additivity. Furthermore, we consider the \(k\)-order additivity of the distorted monotone measure. We prove that under certain conditions, a distorted measure is \(k\)-order additive if and only if the distortion function is a polynomial of \(k\)-th order.

MSC:

28E10 Fuzzy measure theory
26E25 Set-valued functions
Full Text: DOI

References:

[1] Sugeno, M., Fuzzy measures and fuzzy integrals – a survey, (Gupta, M.; Saridis, G.; Gaines, B., Fuzzy Automata and Decision Processes (1977), North Holland: North Holland Amsterdam), 89-102
[2] Pap, E., Null-Additive Set Function (1995), Kluwer Academic Publishers · Zbl 0856.28001
[3] Honda, A.; Okazaki, Y., Theory of inclusion-exclusion integral, Inf. Sci., 376, 136-147 (2017) · Zbl 1429.28023
[4] Honda, A.; Okazaki, Y., Generalization of inclusion-exclusion integral for nondiscrete monotone measure space, Fuzzy Sets Syst., 355, 42-58 (2019) · Zbl 1423.28044
[5] Mesiar, R., Generalizations of k-order additive discrete fuzzy measures, Fuzzy Sets Syst., 102, 423-428 (1999) · Zbl 0936.28014
[6] Kolesárová, A.; Li, J.; Mesiar, R., k-additive aggregation functions and their characterization, Eur. J. Oper. Res., 265, 985-992 (2018) · Zbl 1376.91056
[7] Fukuda, R.; Honda, A.; Okazaki, Y., Constructive k-Additive Measure and Decreasing Convergence Theorems, Lecture Notes in Artificial Intelligence, vol. 12256, 104-116 (2020) · Zbl 1481.28011
[8] Chateauneuf, A., Decomposable capacities, distorted probabilities and concave capacities, Math. Soc. Sci., 31, 19-37 (1996) · Zbl 0921.90001
[9] Honda, A., Canonical fuzzy measure on \((0, 1]\), Fuzzy Sets Syst., 123, 147-150 (2001) · Zbl 1006.28016
[10] Torra, V., Entropy for non-additive measures in continuous domains, Fuzzy Sets Syst., 324, 49-59 (2017) · Zbl 1382.28013
[11] Choquet, G., Theory of capacities, Ann. Inst. Fourier, 5, 131-295 (1953) · Zbl 0064.35101
[12] Rota, G.-C., On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheor. Verw. Geb., 2, 340-368 (1964) · Zbl 0121.02406
[13] Grabisch, M., k-order additive discrete fuzzy measures and their representation, Fuzzy Sets Syst., 92, 167-189 (1997) · Zbl 0927.28014
[14] Kruse, R., A note on λ-fuzzy measures, Fuzzy Sets Syst., 8, 219-222 (1982) · Zbl 0491.28007
[15] Honda, A.; Okazaki, Y., Invariance of fuzzy measure, Bull. Kyushu Inst. Technol., Pure Appl. Math., 46, 1-8 (1999) · Zbl 0939.28015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.