×

Constraint-based inference in probabilistic logic programs. (English) Zbl 1451.68264

Summary: Probabilistic Logic Programs (PLPs) generalize traditional logic programs and allow the encoding of models combining logical structure and uncertainty. In PLP, inference is performed by summarizing the possible worlds which entail the query in a suitable data structure, and using this data structure to compute the answer probability. Systems such as ProbLog, PITA, etc., use propositional data structures like explanation graphs, BDDs, SDDs, etc., to represent the possible worlds. While this approach saves inference time due to substructure sharing, there are a number of problems where a more compact data structure is possible. We propose a data structure called Ordered Symbolic Derivation Diagram (OSDD) which captures the possible worlds by means of constraint formulas. We describe a program transformation technique to construct OSDDs via query evaluation, and give procedures to perform exact and approximate inference over OSDDs. Our approach has two key properties. Firstly, the exact inference procedure is a generalization of traditional inference, and results in speedup over the latter in certain settings. Secondly, the approximate technique is a generalization of likelihood weighting in Bayesian Networks, and allows us to perform sampling-based inference with lower rejection rate and variance. We evaluate the effectiveness of the proposed techniques through experiments on several problems.

MSC:

68T27 Logic in artificial intelligence
68N17 Logic programming
68T37 Reasoning under uncertainty in the context of artificial intelligence

Software:

PITA

References:

[1] Bellodi, E.; Lamma, E.; Riguzzi, F.; Costa, V.; Zese, R., Lifted variable elimination for probabilistic logic programming, Theory and Practice of Logic Programming, 14, 4-5, 681-695, (2014) · Zbl 1309.68027 · doi:10.1017/S1471068414000283
[2] Braz, R. D. S.; Amir, E.; Roth, D., (2005)
[3] Bryant, R. E., Symbolic boolean manipulation with ordered binary-decision diagrams, ACM Computing Surveys, 24, 3, 293-318, (1992) · doi:10.1145/136035.136043
[4] Costa, V. S.; Page, D.; Qazi, M.; Cussens, J., (2002)
[5] Cussens, J., (2000)
[6] Den Broeck, G. V.; Taghipour, N.; Meert, W.; Davis, J.; Raedt, L. D., (2011)
[7] Fierens, D.; Den Broeck, G. V.; Bruynooghe, M.; Raedt, L. D., (2012)
[8] Fung, R. M.; Chang, K.-C., (1990)
[9] Geman, S.; Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 6, 721-741, (1984) · Zbl 0573.62030
[10] Hastings, W. K., Monte carlo sampling methods using markov chains and their applications, Biometrika, 57, 1, 97-109, (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[11] Holzbaur, C., (1992)
[12] Kam, T.; Villa, T.; Brayton, R.; Sangiovanni-Vincentelli, A., Multivalued decision diagrams: Theory and applications, Multiple-Valued Logic, 4, 9-62, (1998) · Zbl 1025.94515
[13] Kazemi, S. M.; Kimmig, A.; Den Broeck, G. V.; Poole, D., (2016)
[14] Kersting, K.; Raedt, L. D.; Raiko, T., Logical hidden Markov models, Journal of Artificial Intelligence Research, 25, (2006) · Zbl 1182.68353
[15] Mansinghka, V.; Roy, D.; Jonas, E.; Tenenbaum, J., (2009)
[16] Michels, S.; Hommersom, A.; Lucas, P. J.; Velikova, M.; Koopman, P. W., (2013)
[17] Milch, B.; Zettlemoyer, L. S.; Kersting, K.; Haimes, M.; Kaelbling, L. P., (2008)
[18] Moldovan, B.; Thon, I.; Davis, J.; Raedt, L. D., (2013)
[19] Nampally, A.; Ramakrishnan, C. R., (2015)
[20] Nampally, A.; Ramakrishnan, C. R., (2016)
[21] Nitti, D.; Laet, T. D.; Raedt, L. D., Probabilistic logic programming for hybrid relational domains, Machine Learning, 103, 3, 407-449, (2016) · Zbl 1362.68247 · doi:10.1007/s10994-016-5558-8
[22] Poole, D., (2003)
[23] Raedt, L. D.; Kimmig, A.; Toivonen, H., (2007)
[24] Riguzzi, F., (2011)
[25] Riguzzi, F.; Swift, T., The PITA system: Tabling and answer subsumption for reasoning under uncertainty, Theory and Practice of Logic Programming, 11, 4-5, 433-449, (2011) · Zbl 1218.68169 · doi:10.1017/S147106841100010X
[26] Sarna-Starosta, B.; Ramakrishnan, C. R., (2007)
[27] Sato, T.; Kameya, Y., (1997)
[28] Sato, T.; Kameya, Y., Parameter learning of logic programs for symbolic-statistical modeling, Journal of Artificial Intelligence Research, 15, 391-454, (2001) · Zbl 0994.68025 · doi:10.1613/jair.912
[29] Shachter, R. D.; Peot, M. A., (1990)
[30] Swift, T.; Warren, D. S., (2010)
[31] Tamaki, H.; Sato, T., 3rd International Conference on Logic Programming, OLD resolution with tabulation, 84-98, (1986), Springer · Zbl 0607.68072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.