×

An all-optical soliton FFT computational arrangement in the 3NLSE-domain. (English) Zbl 1476.68094

Amos, Martyn (ed.) et al., Unconventional computation and natural computation. 15th international conference, UCNC 2016, Manchester, UK, July 11–15, 2016. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 9726, 11-24 (2016).
Summary: In this paper an all-optical soliton method for calculating the FFT (fast Fourier transform) algorithm is presented. The method comes as an extension of the calculation methods (soliton gates) as they become possible in the cubic nonlinear Schrödinger equation (3NLSE) domain, and provides a further proof of the computational abilities of the scheme. The method involves collisions entirely between first order solitons in optical fibers whose propagation evolution is described by the cubic nonlinear Schrödinger equation. The main building block of the arrangement is the half-adder processor. Expanding around the half-adder processor, the “butterfly” calculation process is demonstrated using first order solitons, leading eventually to the realisation of an equivalent to a full Radix-2 FFT calculation algorithm.
For the entire collection see [Zbl 1339.68005].

MSC:

68Q09 Other nonclassical models of computation
65T50 Numerical methods for discrete and fast Fourier transforms
78A35 Motion of charged particles

References:

[1] Jakubowski, M.H., Steiglitz, K., Squier, R.K.: Computing with solitons multi-valued logic. Special Issue on Collision Based Computing 6, 5–6 (2001) · Zbl 1007.68063
[2] Jakubowski, M.H., Steiglitz, K., Squier, R.K.: When can solitons compute? Complex Syst. 10(1), 1–21 (1996) · Zbl 0883.68097
[3] Bakaoukas, A.G., Edwards, J.: Computing in the 3NLS domain using first order solitons. Int. J. Unconventional Comput. (IJUC) 5(6), 489–522 (2009). ISSN: 1548–7199
[4] Bakaoukas, A.G., Edwards, J.: Computing in the 3NLS domain using first and second order solitons. Int. J. Unconventional Comput. 5(6), 523–545 (2009). ISSN: 1548–7199
[5] Tooli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)
[6] Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1981) · Zbl 0496.94015 · doi:10.1007/BF01857727
[7] Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadephia (1981) · Zbl 0472.35002 · doi:10.1137/1.9781611970883
[8] Rand, D., Steiglitz, K.: Computing with Solitons, July 1 2007
[9] Pelinovsky, D.E., Afanasjev, V.V., Kivshar, Y.S.: Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalised nonlinear schr \[ \ddot{o} \] dinger equation. Phys. Rev. E 53(2), 1940–1953 (1996) · doi:10.1103/PhysRevE.53.1940
[10] Hasegawa, Akira: Optical Solitons in Fibers. Springer, New York (1990) · doi:10.1007/978-3-662-09113-5
[11] Fibich, G., Wang, X.-P.: Stability of solitary waves for nonlinear schr \[ \ddot{o} \] dinger equations with inhomogeneous nonlinearitie. Physica D 96(108), 96–108 (2003). Elsevier · Zbl 1098.74614 · doi:10.1016/S0167-2789(02)00626-7
[12] Miller, P.D., Akhmediev, N.N.: Do solitons exchange conserved quantities during collisions? Phys. Rev. Lett. 76(1), 38–41 (1996) · doi:10.1103/PhysRevLett.76.38
[13] Micallef, R.W., Kivshar, Y., Love, J.D., Burak, D., Binder, R.: Generation of spatial solitons using non-linear guided modes. Opt. Quantum Electron. 30, 751–770 (1998). Chapman & Hall · doi:10.1023/A:1006941515679
[14] Ostrowsky, D.B., Reinisch, R. (eds.): Guided Wave Nonlinear Optics. Kluwer, Dordrecht (1992)
[15] Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams, Chap. 12. Chapman & Hall, London (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.