×

A family of fundamental solutions of elliptic partial differential operators with quaternion constant coefficients. (English) Zbl 1277.35011

Summary: The purpose of this paper is to construct a family of fundamental solutions for elliptic partial differential operators with quaternion constant coefficients. The elements of such family are expressed by means of functions, which depend jointly real analytically on the coefficients of the operators and on the spatial variable. We show some regularity properties in the frame of Schauder spaces for the corresponding single layer potentials. Ultimately, we exploit our construction by showing a real analyticity result for perturbations of the layer potentials corresponding to complex elliptic partial differential operators of order two.

MSC:

35A08 Fundamental solutions to PDEs
30G35 Functions of hypercomplex variables and generalized variables
15B33 Matrices over special rings (quaternions, finite fields, etc.)
35J08 Green’s functions for elliptic equations

References:

[1] GürlebeckK, SprößigW. Quaternionic Analysis and Elliptic Boundary Value Problems, Mathematical Research, Vol. 56. Akademie‐Verlag: Berlin, 1989. · Zbl 0699.35007
[2] GürlebeckK, SprößigW. Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley: Chichester, 1997. · Zbl 0897.30023
[3] KravchenkoVV, ShapiroMV. Integral Representations for Spatial Models of Mathematical Physics, Pitman Research Notes in Mathematics Series, Vol. 351. Longman: Harlow, 1996. · Zbl 0872.35001
[4] KravchenkoVV. Applied Quaternionic Analysis, Research and Exposition in Mathematics, Vol. 28. Heldermann Verlag: Lemgo, 2003. · Zbl 1014.78003
[5] ShapiroMV, VasilevskiNL. Quaternionic ψ‐hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ‐hyperholomorphic function theory. Complex Variables. Theory and Application1995; 27(1):17-46. · Zbl 0847.30033
[6] ShapiroMV, VasilevskiNL. Quaternionic ψ‐hyperholomorphic functions, singular integral operators and boundary value problems. II. Algebras of singular integral operators and Riemann type boundary value problems. Complex Variables. Theory and Application1995; 27(1):67-96. · Zbl 0854.30034
[7] SudberyA, Quaternionic analysis. Mathematical Proceedings of the Cambridge Philosophical Society1979; 85(2):199-224. DOI: 10.1017/S0305004100055638.
[8] FicheraG. Una introduzione alla teoria delle equazioni integrali singolari. Rendiconti di Matematica e delle sue Applicazioni, Serie V1958; 17:82-191. · Zbl 0097.08602
[9] MirandaC. Partial Differential Equations of Elliptic Type, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer‐Verlag: New York, 1970. · Zbl 0198.14101
[10] KupradzeVD, GegeliaTG, BasheleĭshviliMO, BurchuladzeTV. Three‐dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, (Russian edn), North‐Holland Series in Applied Mathematics and Mechanics, Vol. 25. North‐Holland Publishing Co.: Amsterdam, 1979. · Zbl 0406.73001
[11] PotthastR. Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems1994; 10(2):431-447. · Zbl 0805.35157
[12] PotthastR. Domain derivatives in electromagnetic scattering. Mathematical Methods in the Applied Sciences1996; 19(15):1157-1175. DOI: 10.1002/(SICI)1099‐1476(199610)19:15<1157::AID‐MMA814>3.3.CO;2‐P. · Zbl 0866.35019
[13] PotthastR. Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain. Journal of Inverse and Ill‐Posed Problems1996; 4(1):67-84. DOI: 10.1515/jiip.1996.4.1.67. · Zbl 0858.35139
[14] CostabelM, Le LouërF. Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: Shape differentiability of pseudo‐homogeneous boundary integral operators. Integral Equations and Operator Theory2012; 72(4):509-535. DOI: 10.1007/s00020‐012‐1954‐z. · Zbl 1331.47045
[15] CostabelM, Le LouërF. Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: Application to scattering by a homogeneous dielectric obstacle. Integral Equations and Operator Theory2012; 73(1):17-48. DOI: 10.1007/s00020‐012‐1955‐y. · Zbl 1263.78001
[16] Le LouërF. On the Fréchet derivative in elastic obstacle scattering. SIAM Journal on Applied Mathematics2012; 72(5):1493-1507. DOI: 10.1137/110834160. · Zbl 1259.35154
[17] Lanza de CristoforisM. A domain perturbation problem for the Poisson equation. Complex Variables. Theory and Application2005; 50(7‐11):851-867. DOI: 10.1080/02781070500136993. · Zbl 1130.35039
[18] Lanza de CristoforisM. Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach. Analysis (Munich)2008; 28(1):63-93. DOI: 10.1524/anly.2008.0903. · Zbl 1153.35020
[19] Lanza de CristoforisM, RossiL. Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density. Journal of Integral Equations and Applications2004; 16(2):137-174. DOI: 10.1216/jiea/1181075272. · Zbl 1094.31001
[20] Lanza de CristoforisM, RossiL. Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density. In Analytic methods of analysis and differential equations: AMADE 2006. Cambridge Scientific Publishers: Cambridge, 2008; 193-220.
[21] Dalla RivaM, Lanza de CristoforisM. A perturbation result for the layer potentials of general second order differential operators with constant coefficients. Journal of Applied Functional Analysis2010; 5(1):10-30. · Zbl 1200.35111
[22] Lanza de CristoforisM, MusolinoP. A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients. Far East Journal of Mathematical Sciences (FJMS)2011; 52(1):75-120. · Zbl 1239.31003
[23] Dalla RivaM. Potential theoretic methods for the analysis of singularly perturbed problems in linearized elasticity. PhD Dissertation, University of Padova, Italy, supervisor M. Lanza de Cristoforis, 2008.
[24] Dalla RivaM. The layer potentials of some partial differential operators: real analytic dependence upon perturbations. In Further progress in analysis. World Scientific Publishing: Hackensack, NJ, 2009; 208-217, DOI: 10.1142/9789812837332_0014. · Zbl 1189.35071
[25] Dalla RivaM. A family of fundamental solutions of the elliptic partial differential operators with real constant coefficients. Submitted, 2012. (Available at: http://arxiv.org/abs/1206.4211).
[26] JohnF. Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience Publishers: New York‐London, 1955. · Zbl 0067.32101
[27] TrèvesF. Fundamental solutions of linear partial differential equations with constant coefficients depending on parameters. American Journal of Mathematics1962; 84:561-577. · Zbl 0121.32201
[28] MantlikF. Partial differential operators depending analytically on a parameter. Annales de l’Institut Fourier (Grenoble)1991; 41(3):577-599. · Zbl 0729.35011
[29] MantlikF. Fundamental solutions for hypoelliptic differential operators depending analytically on a parameter. Transactions of the American Mathematical Society1992; 334(1):245-257. DOI: 10.2307/2153981. · Zbl 0785.35008
[30] OrtnerN, WagnerP. A survey on explicit representation formulae for fundamental solutions of linear partial differential operators. Acta Applicandae Mathematicae1997; 47(1):101-124. DOI: 10.1023/A:1005784017770. · Zbl 0889.35020
[31] GilbargD, TrudingerNS. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer‐Verlag: Berlin, 2001. · Zbl 1042.35002
[32] DeimlingK. Nonlinear Functional Analysis. Springer‐Verlag: Berlin, 1985. · Zbl 0559.47040
[33] ProdiG, AmbrosettiA. Analisi non lineare. Editrice Tecnico Scientifica: Pisa, 1973. · Zbl 0352.47001
[34] GünterNM. Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der mathematischen Physik. B. G. Teubner Verlagsgesellschaft: Leipzig, 1957. · Zbl 0077.09702
[35] DuduchavaR, MitreaD, MitreaM. Differential operators and boundary value problems on hypersurfaces. Mathematische Nachrichten2006; 279(9‐10):996-1023. DOI: 10.1002/mana.200410407. · Zbl 1112.58020
[36] Lanza de CristoforisM. Properties and pathologies of the composition and inversion operators in Schauder spaces. Rendiconti. Accademia Nazionale delle Scienze detta dei XL. Serie V. Memorie di Matematica. Parte I1991; 15:93-109. · Zbl 0829.47059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.