×

A priori estimates for solutions to anisotropic elliptic problems via symmetrization. (English) Zbl 1375.35136

Consider the class of anisotropic elliptic problems in divergence form
\[ \begin{cases} -\text{div} (a(x,u,\nabla u)) = f(x) - \text{div} (g(x)) \quad &\text{in}\quad \Omega,\\ u =0 \quad&\text{on}\quad \partial\Omega, \end{cases}\tag{1} \]
on a bounded, open set \(\Omega \subset \mathbb{R}^N\), \(N\geq 2\), for suitable measurable functions \(f,g\), where the Carathéodory function \(a\) is assumed to satisfy the anisotropic growth condition \[ a(x,\eta,\xi) \geq \Phi (\xi) \qquad \text{for}\quad (\eta,\xi) \in \mathbb{R} \times \mathbb{R}^N, \] for an even convex function \(\Phi : \mathbb{R}^N \to [0,\infty)\) with \(\Phi(0)=0\) and \(\Phi(\xi)\to\infty\) as \(|\xi|\to\infty\) (i.e., a Young function). A model choice would be \(\Phi(\xi) = \sum_{i=1}^N \lambda_i |\xi_i|^{p_i}\); in particular, the growth in the different partial derivatives is allowed to be different, but \(\Phi\) need not be of polynomial type.
The goal of the paper is to prove, in the style of A. Cianchi [Commun. Partial Differ. Equations 32, No. 5, 693–717 (2007; Zbl 1219.35028)], a pointwise comparison theorem for weak solutions of (1) (more precisely, the symmetric decreasing rearrangement on the ball) in terms of the solution of a simpler symmetrized problem on the ball, as well as on integral expressions of the form \(\Phi(\nabla \,\cdot\,)\). This is applied to obtain regularity results for the problem (1) in the form of a priori bounds on (certain norms of) the solution. Applications are given for certain special choices of \(\Phi\) (such as the model choice mentioned above).
The principle novelty in the present paper is the treatment of the divergence form term on the right-hand side of (1).

MSC:

35J25 Boundary value problems for second-order elliptic equations
35B45 A priori estimates in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs

Citations:

Zbl 1219.35028

References:

[1] E.Acerbi and N.Fusco, Partial regularity under anisotropic \(( p , q )\) conditions, J. Differential Equations107, 46-67 (1994). · Zbl 0807.49010
[2] A.Alberico, Boundedness of solutions to anisotropic variational problems, Comm. Partial Differential Equations36, 470-486 (2011). · Zbl 1210.49024
[3] A.Alberico and A.Cianchi, Comparison estimates in anisotropic variational problems, Manuscripta Math.126, 481-503 (2008). · Zbl 1357.49137
[4] A.Alberico, G.diBlasio, F.Feo, Estimates for solutions to anisotropic elliptic equations with zero order term, Springer Proceedings in Mathematics and Statistics176 (2016), pp. 1-15. · Zbl 1408.35046
[5] A.Alvino, V.Ferone, G.Trombetti, and P. L.Lions, Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire14, 275-293 (1997). · Zbl 0877.35040
[6] A.Alvino and G.Trombetti, The best majorization constants for a class of degenerate elliptic equations, Ric. Mat.27, 413-428 (1978). · Zbl 0403.35027
[7] S.Antontsev and M.Chipot, Anisotropic equations: uniqueness and existence results, Differential Integral Equations21, 401-419 (2008). · Zbl 1224.35088
[8] S. N.Antontsev, J. I.Díaz, and S.Shmarev; Energy methods for free boundary problems. Applications to nonlinear PDEs and fluid mechanics. Progress in Nonlinear Differential Equations and their Applications, Vol. 48. Birkhäuser Boston, Inc., Boston, 2002. · Zbl 0988.35002
[9] P.Bénilan, L.Boccardo, T.Gallouët, R.Gariepy, M.Pierre, and J. L.Vázquez, An L^1 ‐theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci.22, 241-273 (1995). · Zbl 0866.35037
[10] M.Belloni, V.Ferone, and B.Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic equations, Z. Angew. Math. Phys. (ZAMP)54, 771-789 (2003). · Zbl 1099.35509
[11] M.Bendahmane and K.Karlsen, Anisotropic doubly nonlinear degenerate parabolic equations. in: Numerical Mathematics and Advanced Applications (Springer, Berlin, 2006), pp. 381-386. · Zbl 1118.35326
[12] C.Bennett and R.Sharpley, Interpolation of Operators, Pure and Applied Mathematics, Vol. 129, (Academic Press, Inc., Boston, MA, 1988). · Zbl 0647.46057
[13] M. F.Betta, Estimates for solutions of nonlinear degenerate elliptic equations, Atti Semin. Mat. Fis. Univ. Modena45, 449-470 (1997). · Zbl 0894.35018
[14] L.Boccardo and T.Gallouët, Nonlinear elliptic equations with right‐hand side measures, Comm. Partial Differential Equations17, 641-655 (1992). · Zbl 0812.35043
[15] L.Boccardo, P.Marcellini and C.Sbordone, \(L^\infty \)‐regularity for variational problems with sharp nonstandard growth conditions, Boll. Union Mat. Ital. Seg. A4, 219‐225 (1990). · Zbl 0711.49058
[16] A.Cianchi, Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations22, 1629-1646 (1997). · Zbl 0892.35048
[17] A.Cianchi,Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire17, 147-168 (2000). · Zbl 0984.49019
[18] A.Cianchi, A fully anisotropic Sobolev inequality, Pacific J. Math.196, 283-295 (2000). · Zbl 0966.46017
[19] A.Cianchi, Optimal Orlicz-Sobolev embeddings, Rev. Mat. Iberoamericana20, 427-474 (2004). · Zbl 1061.46031
[20] A.Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Partial Differential Equations32, 693-717 (2007). · Zbl 1219.35028
[21] G. DalMaso, F.Murat, L.Orsina, and A.Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4)28, 741-808 (1999). · Zbl 0958.35045
[22] A.Dall’Aglio, Approximated solutions of equations with L^1 data. Application to the H‐convergence of quasi‐linear parabolic equations, Ann. Mat. Pura Appl.170, 207-240 (1996). · Zbl 0869.35050
[23] F.Della Pietra and G. diBlasio; Blow‐up solutions for some nonlinear elliptic equations involving a Finsler‐Laplacian, to appear in Publications Matematiques61, (2017). · Zbl 1366.35034
[24] F. DellaPietra and N.Gavitone, Anisotropic elliptic equations with general growth in the gradient and Hardy‐type potentials, J. Differential Equations255, 3788-3810 (2013). · Zbl 1286.35112
[25] A. DiCastro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlinear Stud.9, 367-393 (2009). · Zbl 1181.35084
[26] G. diBlasio and F.Feo, A class of nonlinear degenerate elliptic equations related to the Gauss measure, J. Math. Anal. Appl.386, 763-779 (2012). · Zbl 1229.35095
[27] R. DiNardo, F.Feo, and O.Guibé, Uniqueness result for nonlinear anisotropic elliptic equations, Adv. Differential Equations18, 433-458 (2013). · Zbl 1272.35092
[28] R. DiNardo and F.Feo, Existence and uniqueness for nonlinear anisotropic elliptic equations, Arch. Math. (Basel)102, 141-153 (2014). · Zbl 1293.35108
[29] L.Esposito, F.Leonetti, and G.Mingione, Sharp regularity for functionals with \(( p , q )\) growth, J. Differential Equations204, 5-55 (2004). · Zbl 1072.49024
[30] I.Fragalà, F.Gazzola, and B.Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire21, 715-734 (2004). · Zbl 1144.35378
[31] I.Fragalà, F.Gazzola, and G.Liebermann; Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains, Discrete Contin. Dynam. Syst., 280-286 (2005). · Zbl 1144.35386
[32] N.Fusco and C.Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations18, 153-167 (1993). · Zbl 0795.49025
[33] M.Giaquinta, Growth conditions and regularity, a counterexample, Manuscripte Math.59, 245-248 (1987). · Zbl 0638.49005
[34] M. L.Goldman; Sharp estimates for the norms of Hardy‐type operators on cones of quasimonotone functions. (Russian) Tr. Mat. Inst. Steklova232, (2001), Funkts. Prostran., Garmon. Anal., Differ. Uravn., 115-143; translation in Proc. Steklov Inst. Math. 2001, no. 1 (232),109-137 · Zbl 1030.42013
[35] M. C.Hong, Some remarks on minimizers of variational integrals with non standard growth conditions, Boll. Unione Mat. Ital.6‐A, 91-101 (1992). · Zbl 0768.49022
[36] F.Leonetti, Weak differentiability for solutions to nonlinear elliptic systems with \(( p , q )\) growth conditions, Ann. Mat. Pura Appl.162, 349‐366 (1992). · Zbl 0801.35023
[37] G.Lieberman, Gradient estimates for anisotropic elliptic equations, Adv. Differential Equations10, 767-812 (2005). · Zbl 1144.35388
[38] J. L.Lions; Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod et Gauthier‐Villars, Paris, 1969). · Zbl 0189.40603
[39] P.‐L.Lions and F.Murat; Sur les solutions renormalisées d’équations elliptiques non linéaires, manuscript.
[40] P.Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal.105, 267-284 (1989). · Zbl 0667.49032
[41] A.Mercaldo, J. D.Rossi, S. Segurade León, and C.Trombetti, Anisotropic p, q‐Laplacian equations when p goes to 1, Nonlinear Anal.73, 3546-3560 (2010). · Zbl 1198.35117
[42] A.Kufner and L.Persson, Weighted Inequalities of Hardy Type (World Scientific Publishing Co., Inc., River Edge, NJ, 2003). · Zbl 1065.26018
[43] V. S.Klimov, Isoperimetric inequalities and imbedding theorems, (Russian) Dokl. Akad. Nuak SSSR217, 272-275 (1974). · Zbl 0349.46033
[44] M. M.Rao and Z. D.Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 250, (Marcel Dekker, Inc., New York, 2002). · Zbl 0997.46027
[45] B.Stroffolini, Global boundedness of solutions of anisotropic variational problems, Boll. Unione Mat. Ital. A (7)5, 345-352 (1991). · Zbl 0754.49026
[46] B.Stroffolini, Some remarks on the regularity of anisotropic variational problems, Rend. Accad. Naz. Sci. XV Mem. Mat.17, 229-239 (1993). · Zbl 0874.49030
[47] G.Talenti, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa IV3, 697-718 (1976). · Zbl 0341.35031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.