×

Irreversibility and alternate minimization in phase field fracture: a viscosity approach. (English) Zbl 1447.35312

Author’s abstract: This work is devoted to the analysis of convergence of an alternate (staggered) minimization algorithm in the framework of phase field models of fracture. The energy of the system is characterized by a nonlinear splitting of tensile and compressive strains, featuring non-interpenetration of the fracture lips. The alternating scheme is coupled with an \(L^2\)-penalization in the phase field variable, driven by a viscous parameter \(\delta \rightarrow 0\), and with an irreversibility constraint, forcing the monotonicity of the phase field only w.r.t. time, but not along the whole iterative minimization. We show first the convergence of such a scheme to a viscous evolution for \(\delta \rightarrow 0\) and then consider the vanishing viscosity limit \(\delta \rightarrow 0\).

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
49J45 Methods involving semicontinuity and convergence; relaxation
74R05 Brittle damage
74R10 Brittle fracture
74G05 Explicit solutions of equilibrium problems in solid mechanics

References:

[1] Almi, S., Energy release rate and quasi-static evolution via vanishing viscosity in a fracture model depending on the crack opening, ESAIM Control Optim. Calc. Var., 23, 791-826 (2017) · Zbl 1373.49011
[2] Almi, S.; Belz, S., Consistent finite-dimensional approximation of phase-field models of fracture, Ann. Mat. Pura Appl., 198, 4, 1191-1225 (2019) · Zbl 1420.49033
[3] Almi, S.; Belz, S.; Negri, M., Convergence of discrete and continuous unilateral flows for Ambrosio-Tortorelli energies and application to mechanics, ESAIM Math. Model. Numer. Anal., 53, 659-699 (2019) · Zbl 1421.49033
[4] Almi, S.; Lazzaroni, G.; Lucardesi, I., Crack growth by vanishing viscosity in planar elasticity, Math. Eng., 2, 141 (2020) · Zbl 1506.74343
[5] Almi, S.; Lucardesi, I., Energy release rate and stress intensity factors in planar elasticity in presence of smooth cracks, NoDEA Nonlinear Differ. Equ. Appl., 25, 28 (2018) · Zbl 1407.35192
[6] Almi, S.; Negri, M., Analysis of staggered evolutions for nonlinear energies in phase field fracture, Arch. Ration. Mech. Anal., 236, 189-252 (2020) · Zbl 1448.74012
[7] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383-405 (2015) · Zbl 1398.74270
[8] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures (2008), Basel: Birkhäuser Verlag, Basel · Zbl 1145.35001
[9] Ambrosio, L.; Tortorelli, VM, Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence, Commun. Pure Appl. Math., 43, 999-1036 (1990) · Zbl 0722.49020
[10] Amor, H.; Marigo, J-J; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, 57, 1209-1229 (2009) · Zbl 1426.74257
[11] Artina, M.; Cagnetti, F.; Fornasier, M.; Solombrino, F., Linearly constrained evolutions of critical points and an application to cohesive fractures, Math. Models Methods Appl. Sci., 27, 231-290 (2017) · Zbl 1358.74053
[12] Artina, M.; Fornasier, M.; Micheletti, S.; Perotto, S., Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J. Sci. Comput., 37, B633-B659 (2015) · Zbl 1325.74134
[13] Babadjian, J-F; Millot, V., Unilateral gradient flow of the Ambrosio-Tortorelli functional by minimizing movements, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 779-822 (2014) · Zbl 1302.35051
[14] Balder, EJ, An extension of Prohorov’s theorem for transition probabilities with applications to infinite-dimensional lower closure problems, Rend. Circ. Mat. Palermo, 34, 2, 427-447 (1986) · Zbl 0606.60006
[15] Bourdin, B., Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., 9, 411-430 (2007) · Zbl 1130.74040
[16] Bourdin, B.; Francfort, GA; Marigo, J-J, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826 (2000) · Zbl 0995.74057
[17] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., 48, 980-1012 (2010) · Zbl 1305.74080
[18] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a generalised Ambrosio-Tortorelli functional, Math. Models Methods Appl. Sci., 23, 1663-1697 (2013) · Zbl 1266.74044
[19] Chambolle, A., A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal., 167, 211-233 (2003) · Zbl 1030.74007
[20] Chambolle, A.; Conti, S.; Francfort, GA, Approximation of a brittle fracture energy with a constraint of non-interpenetration, Arch. Ration. Mech. Anal., 228, 867-889 (2018) · Zbl 1391.35366
[21] Chambolle, A.; Crismale, V., A density result in \(GSBD^p\) with applications to the approximation of brittle fracture energies, Arch. Ration. Mech. Anal., 232, 1329-1378 (2019) · Zbl 1411.74050
[22] Crismale, V.; Lazzaroni, G., Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model, Calc. Var. Par. Differ. Equ., 55, 17 (2016) · Zbl 1333.74021
[23] Crismale, V.; Lazzaroni, G., Quasistatic crack growth based on viscous approximation: a model with branching and kinking, NoDEA Nonlinear Differ. Equ. Appl., 24, 33, 7 (2017) · Zbl 1372.35376
[24] Fonseca, I.; Leoni, G., Modern Methods in the Calculus of Variations: \(L^p\) Spaces (2007), New York: Springer, New York · Zbl 1153.49001
[25] Giacomini, A., Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Par. Differ. Equ., 22, 129-172 (2005) · Zbl 1068.35189
[26] Gianazza, U.; Savaré, G., Some results on minimizing movements, Rebd. Accad. Naz. Sci. XL Mem. Mat., 18, 5, 57-80 (1994) · Zbl 0862.49016
[27] Gröger, K., A \(W^{1, p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283, 679-687 (1989) · Zbl 0646.35024
[28] Herzog, R.; Meyer, C.; Wachsmuth, G., Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, J. Math. Anal. Appl., 382, 802-813 (2011) · Zbl 1419.74125
[29] Iurlano, F., A density result for GSBD and its application to the approximation of brittle fracture energies, Calc. Var. Part. Differ. Equ., 51, 315-342 (2014) · Zbl 1297.49080
[30] Karma, A.; Kessler, DA; Levine, H., Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., 87, 045-501 (2001)
[31] Knees, D., Convergence analysis of time-discretisation schemes for rate-independent systems, ESAIM Control Optim. Calc. Var. (2018) · Zbl 1437.49009 · doi:10.1051/cocv/2018048
[32] Knees, D.; Mielke, A.; Zanini, C., On the inviscid limit of a model for crack propagation, Math. Models Methods Appl. Sci., 18, 1529-1569 (2008) · Zbl 1151.49014
[33] Knees, D.; Negri, M., Convergence of alternate minimization schemes for phase-field fracture and damage, Math. Models Methods Appl. Sci., 27, 1743-1794 (2017) · Zbl 1376.49038
[34] Knees, D.; Rossi, R.; Zanini, C., A vanishing viscosity approach to a rate-independent damage model, Math. Models Methods Appl. Sci., 23, 565-616 (2013) · Zbl 1262.74030
[35] Knees, D.; Rossi, R.; Zanini, C., A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains, Nonlinear Anal. Real World Appl., 24, 126-162 (2015) · Zbl 1330.35438
[36] Knees, D.; Rossi, R.; Zanini, C., Balanced viscosity solutions to a rate-independent system for damage, Eur. J. Appl. Math., 30, 117-175 (2019) · Zbl 1407.35193
[37] Lazzaroni, G.; Toader, R., A model for crack propagation based on viscous approximation, Math. Models Methods Appl. Sci., 21, 2019-2047 (2011) · Zbl 1277.74066
[38] Meyer, C.; Sievers, M., Finite element discretization of local minimization schemes for rate-independent evolutions, Calcolo, 56, 38, 6 (2019) · Zbl 1407.65200
[39] Mielke, A.: Evolution of rate-independent systems. In: Evolutionary Equations, vol. II, pp. 461-559. Elsevier/North-Holland, Amsterdam, Handb. Differ. Equ. (2005) · Zbl 1120.47062
[40] Mielke, A.; Rossi, R.; Savaré, G., BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18, 36-80 (2012) · Zbl 1250.49041
[41] Mielke, A.; Rossi, R.; Savaré, G., Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc. (JEMS), 18, 2107-2165 (2016) · Zbl 1357.35007
[42] Mielke, A.; Roubíček, T., Rate-Independent Systems: Theory and Application (2015), New York: Springer, New York · Zbl 1339.35006
[43] Negri, M., Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics, ESAIM Control Optim. Calc. Var., 20, 983-1008 (2014) · Zbl 1301.49017
[44] Negri, M., A unilateral \(L^2\)-gradient flow and its quasi-static limit in phase-field fracture by an alternate minimizing movement, Adv. Calc. Var., 12, 1-29 (2019) · Zbl 1491.74089
[45] Negri, M.; Vitali, E., Approximation and characterization of quasi-static \(H^1\)-evolutions for a cohesive interface with different loading-unloading regimes, Interfaces Free Bound., 20, 25-67 (2018) · Zbl 1400.49009
[46] Thomas, M., Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S, 6, 235-255 (2013) · Zbl 1375.74009
[47] Thomas, M.; Mielke, A., Damage of nonlinearly elastic materials at small strain-existence and regularity results, ZAMM Z. Angew. Math. Mech., 90, 88-112 (2010) · Zbl 1191.35159
[48] Toader, R.; Zanini, C., An artificial viscosity approach to quasistatic crack growth, Boll. Unione Mat. Italy, 2, 9, 1-35 (2009) · Zbl 1180.35521
[49] Wu, J-Y, A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.