×

Bubbles and droplets in nonlinear physics models: analysis and numerical simulation of singular nonlinear boundary value problem. (Russian. English summary) Zbl 07814490

Zh. Vychisl. Mat. Mat. Fiz. 48, No. 11, 2019-2023 (2008); translation in Comput. Math. Math. Phys. 48, No. 11, 2018-2058 (2008).
Summary: For a second-order nonlinear ordinary differential equation (ODE), a singular Boundary value problem (BVP) is investigated which arises in hydromechanics and nonlinear field theory when static centrally symmetric bubble-type (droplet-type) solutions are sought. The equation, defined on a semi-infinite interval \(0<r<\infty \), possesses a regular singular point as \(r\to0\) and an irregular one as \(r\to\infty \). We give the restrictions to the parameters for a correct mathematical statement of the limit boundary conditions in singular points and their accurate transfer into the neighborhoods of these points using certain results for singular Cauchy problems and stable initial manifolds. The necessary and sufficient conditions for the existence of bubble-type (droplet-type) solutions are discussed (in the form of additional restrictions to the parameters) and some estimates are obtained. A priori detailed analysis of a singular nonlinear BVP leads to efficient shooting methods for solving it approximately. Some results of the numerical experiments are displayed and their physical interpretation is discussed.

MSC:

65L99 Numerical methods for ordinary differential equations

References:

[1] Dell’Isola F., Gouin H., Seppecher P., “Radius and surface tension of microscopic bubbles by second gradient theory”, C. r. Acad. Sci. Paris, 320 (1995), 211-216, Serie IIb · Zbl 0833.76004
[2] Dell’Isola F., Gouin H., Rotoli G., “Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations”, Eur. J. Mech. B Fluids, 15:4 (1996), 545-568 · Zbl 0887.76008
[3] Rudakov V. A., Klassicheskie kalibrovochnye polya, Editorial URSS, M., 1999
[4] Linde A. D., Fizika elementarnykh chastits i inflyatsionnaya kosmologiya, Nauka, M., 1991
[5] Lima P. M., Konyukhova N. B., Sukov A. I., Chemetov N. V., “Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems”, J. Comput. Appl. Math., 189 (2006), 260-273 · Zbl 1100.65066 · doi:10.1016/j.cam.2005.05.004
[6] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhteorizdat, M., L., 1950
[7] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:3 (1983), 629-645 · Zbl 0529.34003
[8] Konyukhova N. B., “O povedenii reshenii vnutri i vne ustoichivogo mnogoobraziya nekotorykh dvumernykh nelineinykh sistem obyknovennykh differentsialnykh uravnenii”, Matem. zametki, 8:3 (1970), 285-295
[9] Konyukhova N. B., “O predelnom povedenii ogranichennogo resheniya sistemy evolyutsionnykh kvazilineinykh uravnenii s chastnymi proizvodnymi pervogo poryadka pri neogranichennom vozrastanii vremeni”, Differents. ur-niya, 28:9 (1992), 1561-1573
[10] Konyukhova N. B., “Ob ustoichivykh mnogoobraziyakh Lyapunova dlya avtonomnykh sistem nelineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 34:10 (1994), 1358-1379
[11] Derrick G. H., “Comments on nonlinear wave equations as models for elementary particles”, J. Math. Phys., 5:9 (1964), 1252-1254 · doi:10.1063/1.1704233
[12] Gazzola F., Serrin J., Tang M., “Existence of ground states and free boundary problems for quasilinear elliptic operators”, Advances Different. Equat., 5:1-3 (2000), 1-30 · Zbl 0987.35064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.