×

\(L_p\)-theory for the fractional time stochastic heat equation with an infinite-dimensional fractional Brownian motion. (English) Zbl 1475.60118

Summary: In this paper, we study the \(L_p\)-theory of the fractional time stochastic heat equation \[ \partial_t^{\alpha} u(t,x)=\triangle u(t,x)+f(t,x)+\sum_{k=1}^{\infty} \partial_t^{\gamma} \int_0^t g^k (s,x)\delta \beta_s^k, \] where \(\alpha, \gamma\in (0,1), \gamma <\alpha +\frac{1}{2}, \partial_t^{\alpha}\) denotes the Caputo derivative of order \(\alpha\), and \(\{ \beta^k, k=1,2,\ldots\}\) is a sequence of i.i.d. fractional Brownian motions with a same Hurst index \(H\in (\frac{1}{2},1)\). The integral with respect to fractional Brownian motion is the Skorohod integral. By using the Malliavin calculus techniques and fractional calculus, we obtain a generalized Littlewood-Paley inequality, and prove the existence and uniqueness of \(L_p\)-solution to such equation.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H05 Stochastic integrals
60G22 Fractional processes, including fractional Brownian motion
Full Text: DOI

References:

[1] Alós, E., Mazet, O. and Nualart, D., Stochastic calculus with respect to Gaussian processes, Ann. Prob.29 (2001) 766-801. · Zbl 1015.60047
[2] Balan, R. M., \( L_p\)-theory for the stochastic heat equation with infinite-dimensional fractional noise, ESAIM Probab. Stat.15 (2011) 110-138. · Zbl 1263.60054
[3] Baleanu, D., Diethelm, K., Scalas, E. and Trujillo, J. J., Fractional Calculus: Models and Numerical Methods (World Scientific, 2012). · Zbl 1248.26011
[4] Biagini, F., Hu, Y., Øksendal, B. and Zhang, T., Stochastic Calculus for fBm and Applications, (Springer, 2008). · Zbl 1157.60002
[5] Chang, T. and Lee, K., On a stochastic partial differential equation with a fractional Laplacian operator, Stochastic Process. Appl.122 (2012) 3288-3311. · Zbl 1254.60068
[6] Chen, Z. and Kim, K., An \(L_p\)-theory of non-divergence form SPDEs driven by Lévy process, Forum Math.26 (2014) 1381-1411. · Zbl 1296.60163
[7] Chen, Z., Kim, K. H. and Kim, P., Fractional time stochastic partial differential equations, Stochastic Process. Appl.125 (2015) 1470-1499. · Zbl 1322.60106
[8] Eidelman, S. D., Ivasyshen, S. D. and Kochubei, A. N., Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type (Birkhauser, 2004). · Zbl 1062.35003
[9] Foondun, M. and Nane, E., On stochastic partial differential equations with variable coefficients in \(C^1\) domains, Stochastic Process. Appl.112 (2004) 473-492.
[10] Foondun, M. and Nane, E., Asymptotic properties of some space-time fractional stochastic equations, Math. Z.287 (2017) 493-519. · Zbl 1378.60090
[11] Herrmann, R., Fractional Calculus: An Introduction for Physicists, 2nd edn. (World Scientific, 2014). · Zbl 1293.26001
[12] Hu, Y., Integral Transformations and Anticipative Calculus for Fractional Brownian Motions (Amer. Math. Soc.2005). · Zbl 1072.60044
[13] Kim, I., Kim, K. H. and Kim, P., Parabolic Littlewood-Paley inequality for \(\phi(\operatorname{\Delta})\)-type operators and applications to stochastic integro-differential equations, Adv. Math.249 (2013) 161-203. · Zbl 1287.42015
[14] Kim, I., Kim, K. H. and Lim, S., A Sobolev Space theory for stochastic partial differential equations with time-fractional derivatives, Ann. Probab.47 (2019) 2087-2139. · Zbl 1446.60044
[15] Kim, K. H. and Krylov, N. V., On the Sobolev space theory of parabolic and elliptic equations in \(C^1\) domains, SIAM J. Math. Anal.36 (2004) 618-642. · Zbl 1083.35041
[16] Kim, K. H. and Lim, S., Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations, J. Korean Math. Soc.53 (2016) 929-967. · Zbl 1347.60085
[17] Krylov, N. V., A generalization of the Littlewood-Paley inequality and some other results related to stochastic partial differential equations, Ulam Quater.4 (1994) 16-26. · Zbl 0870.42005
[18] Krylov, N. V., On \(L_p\)-theory of stochastic partial differential equations in the whole space, SIAM J. Math. Anal.27 (1996) 313-340. · Zbl 0846.60061
[19] Krylov, N. V., An analytic approach to SPDEs, in Stochastic Partial Differential Equations: Six Perspectives, eds. Carmona, R. A. and Rozovskii, B. (American Mathematical Society, 1999), pp. 185-242. · Zbl 0933.60073
[20] Krylov, N. V., On the foundation of the \(L_p\)-Theory of stochastic partial differential equations, in Stochastic Partial Differential Equations and Applications — VII, (Chapman & Hall/CRC, 2006), pp. 179-191. · Zbl 1165.60331
[21] Krylov, N. V. and Lototsky, S. V., A Sobolev space theory of SPDEs with constant coefficients on a half line, SIAM J. Math. Anal.30 (1999) 298-325. · Zbl 0928.60042
[22] Krylov, N. V. and Lototsky, S. V., A Sobolev space theory of SPDEs with constant coefficients in a half space, SIAM J. Math. Anal.31 (1999) 19-33. · Zbl 0943.60047
[23] Metzler, R., Barkai, E. and Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Rev. Lett.82 (1999) 3563-3567.
[24] Metzler, R. and Klafter, J., The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A31 (2004) 161-208. · Zbl 1075.82018
[25] Mijena, J. B. and Nane, E., Intermittence and time fractional partial differential equations, Potential Anal.44 (2016) 295-312. · Zbl 1341.60063
[26] Mishura, Y. S., Stochastic Calculus for Fractional Brownian Motion and Related Processes, (Springer, Berlin, 2008). · Zbl 1138.60006
[27] Nourdin, I., Selected Aspects of Fractional Brownian Motion (Springer-Verlag, 2012). · Zbl 1274.60006
[28] Nualart, D., Malliavin Calculus and Related Topics, 2nd edn. (Springer-Verlag, 2006). · Zbl 1099.60003
[29] Samko, S., Kilbas, A. and Marichev, O., Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, 1993). · Zbl 0818.26003
[30] Tudor, C. A., Analysis of Variations for Self-Similar Processes (Springer-Verlag, 2013). · Zbl 1308.60004
[31] Yan, L. and Yu, X., On \(L_p\)-solution of fractional heat equation driven by fractional Brownian motion, J. Appl. Anal. Comp.7 (2017) 581-599. · Zbl 1474.60169
[32] Zacher, R., Weak solutions of abstract evolutionary integro-differential equations in hilbert spaces, Funkcial. Ekvac.52 (2009) 1-18. · Zbl 1171.45003
[33] Zhang, X., \( L_p\)-theory of semi-linear stochastic partial differential equations on general measure spaces and applications, J. Funct. Anal.239 (2006) 44-75. · Zbl 1128.60307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.