×

Hypersurfaces of constant higher-order mean curvature in \(M\times{\mathbb{R}}\). (English) Zbl 1504.53033

Summary: We consider hypersurfaces of products \(M\times{\mathbb{R}}\) with constant \(r\) th mean curvature \({H_r} \ge 0\) (to be called \({{H}_r} \)-hypersurfaces), where \(M\) is an arbitrary Riemannian \(n\)-manifold. We develop a general method for constructing them and employ it to produce many examples for a variety of manifolds \(M\), including all simply connected space forms and the hyperbolic spaces \({\mathbb{H}}_{{\mathbb{F}}}^m \) (rank one symmetric spaces of noncompact type). We construct and classify complete rotational \({{H}_r}(\ge 0)\)-hypersurfaces in \({\mathbb{H}}_{{\mathbb{F}}}^m\times{\mathbb{R}}\) and in \({\mathbb{S}}^n\times{\mathbb{R}}\) as well. They include spheres, Delaunay-type annuli and, in the case of \({\mathbb{H}}_{{\mathbb{F}}}^m\times{\mathbb{R}},\) entire graphs. We also construct and classify complete \({{H}_r}(\ge 0)\)-hypersurfaces of \({\mathbb{H}}_{{\mathbb{F}}}^m\times{\mathbb{R}}\) which are invariant by either parabolic isometries or hyperbolic translations. We establish a Jellett-Liebmann-type theorem by showing that a compact, connected and strictly convex \({{H}_r} \)-hypersurface of \({\mathbb{H}}^n\times{\mathbb{R}}\) or \({\mathbb{S}}^n\times{\mathbb{R}}(n\ge 3)\) is a rotational embedded sphere. Other uniqueness results for complete \({{H}_r} \)-hypersurfaces of these ambient spaces are obtained.

MSC:

53B25 Local submanifolds
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
53C24 Rigidity results
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] Abresch, U.; Rosenberg, H., A Hopf differential for constant mean curvature surfaces in \(\mathbb{S}^2\times{\mathbb{R}}\) and \({\mathbb{H}}^2\times{\mathbb{R}} \), Acta Math., 193, 141-174 (2004) · Zbl 1078.53053 · doi:10.1007/BF02392562
[2] Bérard, P.; Sa Earp, R., Examples of \(H\)-hypersurfaces in \({\mathbb{H}}^n\times{\mathbb{R}}\) and geometric applications, Matemática Contemporânea, Sociedade Brasileira de Matemática, 34, 19-51 (2008) · Zbl 1203.53053
[3] Bérard, P.; Sa Earp, R., Minimal hypersurfaces in \({\mathbb{H}}^n\times{\mathbb{R}},\) total curvature and index, Boll. Unione Mat. Ital., 9, 341-362 (2016) · Zbl 1351.53067 · doi:10.1007/s40574-015-0050-0
[4] Berndt, J.; Tricerri, F.; Vanhecke, L., Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces. Lecture Notes in Mathematics (1995), Berlin: Springer Verlag, Berlin · Zbl 0818.53067 · doi:10.1007/BFb0076902
[5] Bishop, RL; O’Neill, B., Manifolds of negative curvature, Trans. Amer. Math. Soc., 145, 1-49 (1969) · Zbl 0191.52002 · doi:10.1090/S0002-9947-1969-0251664-4
[6] Cecil, T.; Ryan, P., Geometry of Hypersurfaces (2015), Berlin: Springer Verlag, Berlin · Zbl 1331.53001 · doi:10.1007/978-1-4939-3246-7
[7] Cheng, X.; Rosenberg, H., Embedded positive constant r-mean curvature hypersurfaces in \(M^m\times{\mathbb{R}} \), An. Acad. Brasil. Ciênc., 77, 183-199 (2005) · Zbl 1074.53049 · doi:10.1590/S0001-37652005000200001
[8] de Lima, RF, Embeddedness, convexity, and rigidity of hypersurfaces in product spaces, Ann. Glob. Anal. Geom., 59, 319-344 (2021) · Zbl 1472.53031 · doi:10.1007/s10455-020-09745-2
[9] de Lima, RF; Roitman, P., Helicoids and catenoids in \(M\times{\mathbb{R}} \), Ann. Mat. Pura Appl., 200, 2385-2421 (2021) · Zbl 1472.53072 · doi:10.1007/s10231-021-01085-7
[10] Díaz-Ramos, JC; Domínguez-Vázquez, M., Isoparametric hypersurfaces in Damek-Ricci spaces, Adv. Math., 239, 1-17 (2013) · Zbl 1293.53065 · doi:10.1016/j.aim.2013.02.010
[11] do Carmo, M., Warner, F. J.: Rigidity and convexity of hypersurfaces in spheres. Diff. Geom. 4, 133-144 (1970) · Zbl 0201.23702
[12] Domínguez-Vázquez, M.: An introduction to isoparametric foliations. Preprint (2018) (available at: http://xtsunxet.usc.es/miguel/teaching/jae2018.html)
[13] Domínguez-Vázquez, M., Manzano, J. M.: Isoparametric surfaces in \({\mathbb{E}}(k,{\uptau })\)-spaces. Preprint. To appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. Available at https://arxiv.org/abs/1803.06154
[14] Eberlein, P.; O’Neill, B., Visibility manifolds., Pacific J. Math., 46, 45-109 (1973) · Zbl 0264.53026 · doi:10.2140/pjm.1973.46.45
[15] Elbert, MF; Sá Earp, R., Constructions of \({{H}_r}\)-hypersurfaces, barriers and Alexandrov theorem in \({\mathbb{H}}^n\times{\mathbb{R}} \), Ann. Math. Pura Appl., 194, 1809-1834 (2015) · Zbl 1329.53084 · doi:10.1007/s10231-014-0446-y
[16] Elbert, MF; Nelli, B.; Santos, W., Hypersurfaces with \(H_{r+1}=0\) in \({\mathbb{H}}^n\times{\mathbb{R}} \), Manuscripta Math., 149, 507-521 (2016) · Zbl 1343.53056 · doi:10.1007/s00229-015-0794-y
[17] Espinar, J.; Gálvez, A.; Rosenberg, H., Complete surfaces with positive extrinsic curvature in product spaces, Comment. Math. Helv., 84, 351-386 (2009) · Zbl 1166.53040 · doi:10.4171/CMH/165
[18] Fontenele, F.; Silva, S., A tangency principle and applications, Illinois J. Math., 54, 213-228 (2001) · Zbl 0987.53026
[19] Kim, Y., Quasiconformal conjugacy classes of parabolic isometries of complex hyperbolic space, Pacific J. Math., 270, 129-149 (2014) · Zbl 1347.30002 · doi:10.2140/pjm.2014.270.129
[20] Kim, S.; Nikolayevsky, Y.; Park, J., Einstein hypersurfaces of the Cayley projective plane, Diff. Geom. Appl., 69, 1-6 (2020) · Zbl 1435.53015 · doi:10.1016/j.difgeo.2020.101594
[21] Korevaar, N., Sphere theorems via Alexandrov for constant Weingarten curvature hypersurfaces - appendix to a note of A, Ros. J. Diff. Geom., 27, 221-223 (1988) · Zbl 0638.53052
[22] Mahmoudi, F., Constant k-curvature hypersurfaces in Riemannian manifolds, Diff. Geom. Appl., 28, 1-11 (2010) · Zbl 1191.53044 · doi:10.1016/j.difgeo.2009.10.007
[23] Montiel, S.; Ros, A., Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, Differential geometry Pitman Monogr, Surveys Pure Appl. Math., 52, 279-296 (1991) · Zbl 0723.53032
[24] Nelli, B.; Rosenberg, H., Simply connected constant mean curvature surfaces in \({\mathbb{H}}^2\times{\mathbb{R}} \), Michigan Math. J., 54, 537-543 (2006) · Zbl 1152.53307 · doi:10.1307/mmj/1163789914
[25] Pedrosa, R., The isoperimetric problem in spherical cylinders, Ann. Glob. Anal. and Geom., 26, 333-354 (2004) · Zbl 1082.53066 · doi:10.1023/B:AGAG.0000047528.20962.e2
[26] Pedrosa, R.; Ritoré, M., Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J., 48, 4, 1357-1394 (1999) · Zbl 0956.53049 · doi:10.1512/iumj.1999.48.1614
[27] Protter, M., Unique continuation for elliptic equations, Trans. Am. Math. Soc., 95, 81-91 (1960) · Zbl 0094.07901 · doi:10.1090/S0002-9947-1960-0113030-3
[28] Reignier, J.; Conte, R., Singularities of ordinary linear differential equations and integrability, The Painlevé Property (1999), New York, NY: CRM Series in Mathematical Physics. Springer, New York, NY · Zbl 0958.01010
[29] Rosenberg, H., Minimal surfaces in \(M^2\times{\mathbb{R}} \), Illinois J. Math., 46, 1177-1195 (2002) · Zbl 1036.53008
[30] Teschl, G.: Ordinary differential equations and dynamical systems. AMS (2012) · Zbl 1263.34002
[31] Tojeiro, R., On a class of hypersurfaces in \(\mathbb{S}^n\times{\mathbb{R}}\) and \({\mathbb{H}}^n\times{\mathbb{R}} \), Bull. Braz. Math. Soc.,New Ser., 41, 2, 199-209 (2010) · Zbl 1218.53061 · doi:10.1007/s00574-010-0009-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.