×

Combinatorial Dyson-Schwinger equations in noncommutative field theory. (English) Zbl 1273.81215

In this paper, the authors introduce the Hopf algebra structure which describes the renormalization of this noncommutative model (the translation-invariant model introduced in [R. Gurau et al., Commun. Math. Phys. 287, No. 1, 275–290 (2009; Zbl 1170.81041)]). Moreover, they present the pre-Lie and Lie algebra structures associated to graphs. Also several differences are exhibited when the ribbon graph representation of noncommutative quantum field theory (briefly NCQFT) are utilized instead of the usual Feynman graphs of commutative quantum field theory. Further, they offer the definition of Hochschild one-cocyles \(B_{+}^\gamma\) which make it possible to write down the combinatorial Dyson-Schwinger equations in NCQFT. They give the corresponding theorems and work out completely the one- and two-loop implementations of these theorems.

MSC:

81T75 Noncommutative geometry methods in quantum field theory
81R60 Noncommutative geometry in quantum theory
81T18 Feynman diagrams
22E70 Applications of Lie groups to the sciences; explicit representations
05E15 Combinatorial aspects of groups and algebras (MSC2010)
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)

Citations:

Zbl 1170.81041

References:

[1] P. Aluffi and M. Marcolli, Feynman motives of banana graphs. Commun. Number Theory Phys. 3 (2009), 1-57. · Zbl 1171.81384 · doi:10.4310/CNTP.2009.v3.n1.a1
[2] J. Ben Geloun and A. Tanasa, One-loop \check functions of a translation-invariant renormaliz- able noncommutative scalar model. Lett. Math. Phys. 86 (2008), 19-32. · Zbl 1175.81175 · doi:10.1007/s11005-008-0270-7
[3] C. Bergbauer and D. Kreimer, Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology. In Physics and number theory , IRMA Lect. Math. Theor. Phys. 10, Eur. Math. Soc., Zürich 2006, 133-164. · Zbl 1141.81024
[4] D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda, and M. Wohlgenannt, Translation- invariant models for non-commutative gauge fields. J. Phys. A 41 (2008), 252002. Eur. Phys. J. C Part. Fields 62 (2009), 433-443. Europhys. Lett. 86 (2009), 51002. · Zbl 1192.81326 · doi:10.1088/1751-8113/41/25/252002
[5] S. Bloch and D. Kreimer, Mixed Hodge structures and renormalization in physics. Com- mun. Number Theory Phys. 2 (2008), 637-718. · Zbl 1214.81095 · doi:10.4310/CNTP.2008.v2.n4.a1
[6] D. J. Broadhurst and D. Kreimer, Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality. Nucl. Phys. B 600 (2001), 403-422. · Zbl 1043.81049 · doi:10.1016/S0550-3213(01)00071-2
[7] A. Connes, A. Connes, Noncommutative geometry . Academic Press, San Diego, CA, 1994. · Zbl 0818.46076
[8] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann- Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys. 210 (2000), 249-273. · Zbl 1032.81026 · doi:10.1007/s002200050779
[9] A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and mo- tives . Amer. Math. Soc. Colloq. Publ. 55, Amer. Math. Soc., Providence, RI, 2008. · Zbl 1209.58007
[10] A. de Goursac, A. Tanasa, and J.-C. Wallet, Vacuum configurations for renormaliz- able non-commutative scalar models. Eur. Phys. J. C Part. Fields 53 (2008), 459-466. · Zbl 1189.81213 · doi:10.1140/epjc/s10052-007-0465-6
[11] A. de Goursac, J.-C. Wallet, and R. Wulkenhaar, Noncommutative induced gauge the- ory. Eur. Phys. J. C Part. Fields 51 (2007), 977-987. Eur. Phys. J. C Part. Fields 52 (2007), 435-450. Eur. Phys. J. C Part. Fields 56 (2008), 293-304. Europhys. Lett. 79 (2007), 61002. Eur. Phys. J. C Part. Fields 67 (2010), 575-582. · Zbl 1189.81215 · doi:10.1140/epjc/s10052-007-0335-2
[12] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and H. Verschelde, Refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results. Phys. Rev. D 78 (2008), 065047. · Zbl 1158.81020
[13] H. Grosse and R. Wulkenhaar, Renormalisation of 4-theory on noncommutative R4 in the matrix base. Comm. Math. Phys. 256 (2005), 305-374. · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[14] R. Gurau, J. Magnen, V. Rivasseau, and A. Tanasa, A translation-invariant renor- malizable non-commutative scalar model. Comm. Math. Phys. 287 (2009), 275-290. · Zbl 1170.81041 · doi:10.1007/s00220-008-0658-3
[15] R. Gurau, J. Magnen, V. Rivasseau, and F. Vignes-Tourneret, Renormalization of non- commutative \hat 4 4 field theory in x space. Comm. Math. Phys. 267 (2006), 515-542. · Zbl 1113.81101 · doi:10.1007/s00220-006-0055-8
[16] R. Gurau, A. Malbouisson, V. Rivasseau, and A. Tanasa, Non-commutative complete Mellin representation for Feynman amplitudes. Lett. Math. Phys. 81 (2007), 161-175. · Zbl 1161.81406 · doi:10.1007/s11005-007-0170-2
[17] R. Gurau and V. Rivasseau, Parametric representation of noncommutative field theory. Comm. Math. Phys. 272 (2007), 811-835. · Zbl 1156.81465 · doi:10.1007/s00220-007-0215-5
[18] R. Gur\?au and A. Tanas\?a, Dimensional regularization and renormalization of non- commutative quantum field theory. Ann. Henri Poincaré 9 (2008), 655-683. · Zbl 1147.81019 · doi:10.1007/s00023-008-0363-y
[19] D. Kreimer, Anatomy of a gauge theory. Ann. Physics 321 (2006), 2757-2781. · Zbl 1107.81038 · doi:10.1016/j.aop.2006.01.004
[20] D. Kreimer, Dyson-Schwinger equations: from Hopf algebras to number theory. In Uni- versality and renormalization , Fields Inst. Commun. 50, Amer. Math. Soc., Providence, RI, 2007, 225-248. · Zbl 1370.81128
[21] D. Kreimer, The core Hopf algebra. In Quanta of maths , Clay Math. Proc. 11, Amer. Math. Soc., Providence, RI, 2010, 313-321. · Zbl 1218.81085
[22] D. Kreimer and W. D. van Suijlekom, Recursive relations in the core Hopf algebra. Nuclear Phys. B 820 (2009), 682-693. · Zbl 1196.81199 · doi:10.1016/j.nuclphysb.2009.04.025
[23] D. Kreimer and K. Yeats, Recursion and growth estimates in renormalizable quantum field theory. Comm. Math. Phys. 279 (2008), 401-427. · Zbl 1156.81033 · doi:10.1007/s00220-008-0431-7
[24] E. Langmann and R. J. Szabo, Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533 (2002), 168-177. · Zbl 0994.81116 · doi:10.1016/S0370-2693(02)01650-7
[25] J. Magnen, V. Rivasseau and A. Tanasa, Commutative limit of a renormalizable noncom- mutative model. Europhys. Lett. 86 (2009), 11001. · Zbl 1170.81041
[26] S. Minwalla, M. Van Raamsdonk, and N. Seiberg, Noncommutative perturbative dynam- ics. J. High Energy Phys. 2 (2000), 020. · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
[27] V. Rivasseau, From perturbative to constructive renormalization . Princeton Ser. Phys., Princeton University Press, Princeton, NJ, 1991.
[28] V. Rivasseau and A. Tanas\?a, Parametric representation of “covariant” noncommutative QFT models. Comm. Math. Phys. 279 (2008), 355-379. · Zbl 1158.81026 · doi:10.1007/s00220-008-0437-1
[29] A. Tanasa, Feynman amplitudes in renormalizable non-commutative quantum field the- ory. Preprint 2007.
[30] A. Tanasa, Overview of the parametric representation of renormalizable non-commutative field theory. J. Phys. Conf. Ser. 103 (2008), 012012.
[31] A. Tanasa, Parametric representation of a translation-invariant renormalizable noncom- mutative model. J. Phys. A 42 (2009), 365208. J. Noncommut. Geom. 4 (2010), 29-82. · Zbl 1178.81262 · doi:10.1088/1751-8113/42/36/365208
[32] A. Tanasa, Scalar and gauge translation-invariant noncommutative models. Romanian J. Phys. 53 (2008), 1207-1212. · Zbl 1187.81200
[33] A. Tanas\?a and F. Vignes-Tourneret, Hopf algebra of non-commutative field theory. J. Noncommut. Geom. 2 (2008), 125-139. · Zbl 1181.81101 · doi:10.4171/JNCG/17
[34] F. Vignes-Tourneret, Renormalization of the orientable non-commutative Gross-Neveu model. Ann. Henri Poincaré 8 (2007), 427-474. · Zbl 1133.81058 · doi:10.1007/s00023-006-0312-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.