×

Spectral Galerkin schemes for a class of multi-order fractional pantograph equations. (English) Zbl 1456.65129

Summary: In this paper, we study and present a spectral numerical technique for solving a general class of multi-order fractional pantograph equations with varying coefficients and systems of pantograph equations. In this study, the spectral Galerkin approach in combination with the properties of shifted Legendre polynomials is used to reduce such equations to systems of algebraic equations, which are solved using any suitable solver. As far as the authors know, this is the first attempt to deal with fractional pantograph equations via spectral Galerkin approach. The errors and convergence of the adopted approach are rigorously analyzed. The efficiency and accuracy of the technique are tested by considering five different examples, to ensure that the suggested approach is more accurate than the existing other techniques. The obtained results in this paper are comparing favorably with those published by other researchers and with the existing exact solutions, whenever possible.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35C10 Series solutions to PDEs
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Kulish, V. V.; José, L. L., Application of fractional calculus to fluid mechanics, J. Fluid Eng., 124, 803-806 (2002)
[2] Agrawal, O. P., A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam., 38, 323-337 (2004) · Zbl 1121.70019
[3] Ezz-Eldien, S. S.; Doha, E. H.; Baleanu, D.; Bhrawy, A. H., A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems, J. Vib. Control, 23, 16-30 (2017) · Zbl 1373.49029
[4] Nemati, S.; Lima, P. M.; Torres, D. F.M., A numerical approach for solving fractional optimal control problems using modified hat functions, Commun. Nonlinear Sci. Numer. Simul., 78, Article 104849 pp. (2019) · Zbl 1476.49033
[5] Verotta, D., Fractional dynamics pharmacokinetics-pharmacodynamic models, J. Pharmacokinet. Pharmacodyn., 37, 257-276 (2010)
[6] Meral, F. C.; Royston, T. J.; Magin, R., Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15, 939-945 (2010) · Zbl 1221.74012
[7] Oldham, K. B., Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41, 9-12 (2010) · Zbl 1177.78041
[8] Fu, Y.; Cai, W.; Wang, Y., An explicit structure-preserving algorithm for the nonlinear fractional hamiltonian wave equation, Appl. Math. Lett., 102, Article 106123 pp. (2020) · Zbl 1440.65087
[9] Hendy, A. S.; Macías-Diaz, J. E., A numerically efficient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system, Commun. Nonlinear Sci. Numer. Simul., 71, 22-37 (2019) · Zbl 1464.65084
[10] Ezz-Eldien, S. S.; Hafez, R. M.; Bhrawy, A. H.; Baleanu, D.; El-Kalaawy, A. A., New numerical approach for fractional variational problems using shifted Legendre orthonormal polynomials, J. Optim. Theory Appl., 174, 295-320 (2017) · Zbl 1377.65071
[11] Dabiri, A.; Butcher, E. A., Efficient modified Chebyshev differentiation matrices for fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 50 (2007), 284-310 · Zbl 1510.65170
[12] Zahra, W. K.; Nasr, M. A., Exponentially fitted methods for solving two-dimensional time fractional damped Klein-Gordon equation with nonlinear source term, Commun. Nonlinear Sci. Numer. Simul., 73, 177-194 (2019) · Zbl 1464.65095
[13] Zafarghandi, F. S.; Mohammadi, M.; Babolian, E.; Javadi, S., Radial basis functions method for solving the fractional diffusion equations, Appl. Math. Comput., 342, 224-246 (2019) · Zbl 1429.65252
[14] Babaei, A.; Moghaddam, B. P.; Banihashemi, S.; Machado, J. A.T., Numerical solution of variable-order fractional integro-partial differential equations via sinc collocation method based on single and double exponential transformations, Commun. Nonlinear Sci. Numer. Simul., 82, Article 104985 pp. (2020) · Zbl 1452.65268
[15] Ezz-Eldien, S. S.; El-Kalaawy, A. A., Numerical simulation and convergence analysis of fractional optimization problems with right-sided caputo fractional derivative, J. Comput. Nonlinear Dyn., 13, Article 011010 pp. (2018), (8 pages)
[16] Zaky, M. A., An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75, 2243-2258 (2018) · Zbl 1409.65080
[17] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model., 35, 5662-5672 (2011) · Zbl 1228.65126
[18] Youssri, H., A new operational matrix of caputo fractional derivatives of fermat polynomials: An application for solving the Bagley-Torvik equation, Adv. Differential Equations, 2017, Article 73 pp. (2017), (17 pages) · Zbl 1422.34076
[19] Esmaeili, S.; Shamsi, M., A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16, 3646-3654 (2011) · Zbl 1226.65062
[20] Bhrawy, A. H.; Alofi, A. S.; Ezz-Eldien, S. S., A quadrature tau method for fractional differential equations with variable coefficients, Appl. Math. Lett., 24, 2146-2152 (2011) · Zbl 1269.65068
[21] Dehghan, M.; Abbaszadeh, M., A Legendre spectral element method (sem) based on the modified bases for solving neutral delay distributed order fractional damped diffusion-wave equation, Math. Methods Appl. Sci., 41, 3476-3494 (2018) · Zbl 1395.65098
[22] Dehghan, M.; Abbaszadeh, M., Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis, Appl. Numer. Math., 119, 51-66 (2017) · Zbl 1368.65261
[23] Fu, Y.; Cai, W.; Wang, Y., Structure-preserving algorithms for the two-dimensional fractional Klein-Gordon-Schrödinger equation, Appl. Numer. Math., 156, 77-93 (2020) · Zbl 1442.65219
[24] Hafez, R. M., Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method, J. Comput. Appl. Math., 37, 5253-5273 (2018) · Zbl 1404.65196
[25] Doha, E. H.; Abdelkawy, M. A.; Amin, A. Z.M.; Lopes, A. M., Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations, Commun. Nonlinear Sci. Numer. Simul., 72, 342-359 (2019) · Zbl 1464.65078
[26] Abdelkawy, M. A., A collocation method based on Jacobi and fractional order Jacobi basis functions for multi-dimensional distributed-order diffusion equations, Int. J. Nonlinear Sci. Numer. Simul., 19, 781-792 (2018) · Zbl 1461.65243
[27] Alsuyuti, M. M.; Doha, E. H.; Ezz-Eldien, S. S.; Bayoumi, B. I.; Baleanu, D., Modified Galerkin algorithm for solving multi type fractional differential equations, Math. Methods Appl. Sci., 42, 5, 1389-1412 (2019) · Zbl 1416.65375
[28] Ajello, W. G.; Freedman, H. I.; Wu, J., A model of stage structured population growth with density depended time delay, SIAM J. Appl. Math., 52, 855-869 (1992) · Zbl 0760.92018
[29] Bocharov, G. A.; Rihan, F. A., Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125, 183-199 (2000) · Zbl 0969.65124
[30] Dehghan, M.; Shakeri, F., The use of the decomposition procedure of adomian for solving a delay differential equation arising in electrodynamics, Phys. Scr., 78, 6, Article 065004 pp. (2008) · Zbl 1159.78319
[31] Iserles, A., On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4, 1-38 (1993) · Zbl 0767.34054
[32] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press New York, USA · Zbl 0777.34002
[33] Ezz-Eldien, S. S., On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321, 63-73 (2018) · Zbl 1426.65114
[34] Huang, C.; Vandewalle, S., Discretized stability and error growth of the nonautonomous pantograph equation, SIAM J. Numer. Anal., 42, 2020-2042 (2005) · Zbl 1080.65068
[35] D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Proc. IMACS-SMC, Vol. 2, 1996, pp. 963-968.
[36] Bonnet, C.; Partington, J. R., Analysis of fractional delay systems of retarded and neutral type, Automatica, 38, 1133-1138 (2002) · Zbl 1007.93065
[37] Chen, Y.; Moore, K. L., Analytical stability bound for a class of delayed fractional-order dynamic systems, Nonlinear Dynam., 29, 191-200 (2002) · Zbl 1020.34064
[38] Deng, W.; Li, C.; Lu, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 48, 409-416 (2007) · Zbl 1185.34115
[39] Lazarevic, M. P.; Spasic, A. M., Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Math. Comput. Model., 49, 47-481 (2009) · Zbl 1165.34408
[40] Liu, K.; Jiang, W., Finite-time stability of linear fractional order neutral systems, Math. Appl., 24, 724-730 (2011) · Zbl 1249.34228
[41] Sabatier, J.; Moze, M.; Farges, C., LMI stability conditions for fractional order systems, Comput. Math. Appl., 59, 1594-1609 (2010) · Zbl 1189.34020
[42] Baleanu, D.; Ranjbar, A.; Sadati, S. J.A.; Abdeljawad, T.; Gejji, V., Lyapunov-Krasovskii stability theorem for fractional systems with delay, Rom. J. Phys., 56, 636-643 (2011) · Zbl 1231.34005
[43] Pakzad, M. A.; Pakzad, S.; Nekoui, M. A., On the stability of fractional-order systems of neutral type, J. Comput. Nonlinear. Dyn., 10, Article 051013-1 (2015), (7 pages)
[44] Magin, R. L., Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59, 1586-1593 (2010) · Zbl 1189.92007
[45] Rahimkhani, P.; Ordokhani, Y.; Babolian, E., A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations, Numer. Algorithms, 74, 223-245 (2017) · Zbl 1358.65043
[46] Wang, Y.; Ezz-Eldien, S.; Aldraiweesh, P., A new algorithm for the solution of nonlinear two-dimensional volterra integro-differential equations of high-order, J. Comput. Appl. Math., 364, 112301 (2020) · Zbl 1503.65327
[47] Isah, A.; Phang, C.; Phang, P., Collocation method based on genocchi operational matrix for solving generalized fractional pantograph equations, Int. J. Differ. Equ., 2017, Article 2097317 pp. (2017), (10 pages) · Zbl 1487.65101
[48] Shi, L.; Ding, X.; Chen, Z.; Ma, Q., A new class of operational matrices method for solving fractional neutral pantograph differential equations, Adv. Differential Equations, 2018, Article 94 pp. (2018), (17 pages) · Zbl 1445.34023
[49] Ezz-Eldien, S. S.; Doha, E. H., Fast and precise spectral method for solving pantograph type Volterra integro-differential equations, Numer. Algorithms, 81, 57-77 (2019) · Zbl 1447.65014
[50] Dabiri, A.; Butcher, E. A., Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods, Appl. Math. Model., 56, 424-448 (2018) · Zbl 1480.65158
[51] Nemati, S.; Lima, P.; Sedaghat, S., An effective numerical method for solving fractional pantograph differential equations using modification of hat functions, Appl. Numer. Math., 131, 174-189 (2018) · Zbl 1446.65042
[52] El-Ajou, A.; Oqielat, M. N.; Al-Zhour, Z.; Momani, S., Analytical numerical solutions of the fractional multi-pantograph system: Two attractive methods and comparisons, Results Phys., 14, Article 102500 pp. (2019)
[53] Ezz-Eldien, S. S.; Wang, Y.; Abdelkawy, M. A.; Zaky, M. A.; Aldraiweesh, A. A.; Tenreiro Machado, J., Chebyshev spectral methods for multi-order fractional neutral pantograph equations, Nonlinear Dynam. (2020) · Zbl 1516.34016
[54] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Vol. 198 (1998), Academic press: Academic press San Diego
[55] Balachandran, K.; Kiruthika, S.; Trujillo, J. J., Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33, 3, 712-720 (2013) · Zbl 1299.34009
[56] Jalilian, Y.; Ghasemi, M., On the solutions of a nonlinear fractional integro-differential equation of pantograph type, Mediterr. J. Math., 14, 5, 194 (2017) · Zbl 1382.65468
[57] Jalilian, Y.; Jalilian, R., Existence of solution for delay fractional differential equations, Mediterr. J. Math., 10, 4, 1731-1747 (2013) · Zbl 1283.34073
[58] Vivek, D.; Kanagarajan, K.; Elsayed, E. M., Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15, 1, 15 (2018) · Zbl 1390.34029
[59] Vivek, D.; Kanagarajan, K.; Harikrishnan, S., Existence and uniqueness results for pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2, 105-112 (2017)
[60] Valizadeh, M.; Mahmoudi, Y.; Saei, F. D., Application of natural transform method to fractional pantograph delay differential equations, J. Math., Article 3913840 pp. (2019), (9 pages) · Zbl 1453.34103
[61] Yang, C.; Hou, J., Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations, Numer. Algorithms (2020)
[62] Vivek, D.; Kanagarajan, K.; Harikrishnan, S., Existence and uniqueness results for pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2017, 105-112 (2017)
[63] Sun, S.; Li, Q.; Li, Y., Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations, Comput. Math. Appl., 64, 3310-3320 (2012) · Zbl 1268.34028
[64] Granas, A.; Dugundji, J., Fixed Point Theory (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1025.47002
[65] Boyd, D. W.; Wong, J. S.W., On nonlinear contractions, Proc. Amer. Math. Soc., 20, 458-464 (1969) · Zbl 0175.44903
[66] Shen, J.; Tang, T.; Wang, L., Spectral Methods: Algorithms, Analysis and Applications, Vol. 41 (2011), Springer: Springer Berlin · Zbl 1227.65117
[67] Ezz-Eldien, S. S., New quadrature approach based on operational matrix for solving a class of fractional variational problems, J. Comput. Phys., 317, 362-381 (2016) · Zbl 1349.65250
[68] Chaggara, H.; Koepf, W., On linearization coefficients of Jacobi polynomials, Appl. Math. Lett., 23, 609-614 (2010) · Zbl 1189.33013
[69] Giordano, C.; Laforgia, A., On the Bernstein-type inequalities for ultraspherical polynomials, J. Comput. Appl. Math., 153, 243-248 (2003) · Zbl 1017.33006
[70] Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H., Fully Legendre spectral Galerkin algorithm for solving linear one-dimensional telegraph type equation, Int. J. Comput. Methods, 16, 8, Article 1850118 pp. (2019) · Zbl 1489.65140
[71] Stewart, J., Essential Calculus: Early Transcendentals (2012), Cengage Learning: Cengage Learning Singapore
[72] Rahimkhani, P.; Ordokhani, Y.; Babolian, E., Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309, 493-510 (2017) · Zbl 1468.65089
[73] Rabiei, K.; Ordokhani, Y., Solving fractional pantograph delay differential equations via fractional order Boubaker polynomials, Eng. Comput., 35, 1431-1441 (2019)
[74] Wang, L.; Chen, Y.; Liu, D.; Boutat, D., Numerical algorithm to solve generalized fractional pantograph equations with variable coefficients based on shifted Chebyshev polynomials, Int. J. Comput. Math., 96, 1-24 (2019)
[75] Nemati, S.; Lima, P. M.; Sedaghat, S., Legendre wavelet collocation method combined with the Gauss-Jacobi quadrature for solving fractional delay-type integro-differential equations, Appl. Numer. Math., 149, 99-112 (2020) · Zbl 1464.65125
[76] Rahimkhani, P.; Ordokhani, Y.; Babolian, E., Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algorithms, 77, 1283-1305 (2018) · Zbl 1402.65061
[77] Iqbal, M. A.; Saeed, U.; Mohyud-Din, S. T., Modified laguerre wavelets method for delay differential equations of fractional-order, Egypt. J. Basic Appl. Sci., 2, 50-54 (2015)
[78] Yang, Y.; Huang, Y., Spectral-collocation methods for fractional pantograph delay-integrodifferential equations, Adv. Math. Phys., 2013, Article 821327 pp. (2013), (14 pages) · Zbl 1291.65249
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.