×

Neuronal identification of acoustic signal periodicity. (English) Zbl 1125.92013

Summary: Acoustic signals transmit information by temporal characteristics and envelope periodicity as well as by their frequency content. Many animals can extract the frequency content of a signal by means of specialized organs such as the cochlea but for the detection and identification of higher-order periodicity, e.g., amplitude modulations, this type of organ is useless. In addition, many animals do not have a cochlea but still depend on a reliable identification of different frequencies in the vast variety of acoustic signals they perceive in their natural environment. Hence, neural mechanisms to decode periodicity information must exist.
We present a detailed mathematical analysis of a recurrent and a feedforward model of neuronal periodicity extraction and discuss basic constraints for neuronal circuitry performing such a task in a biological system. Both the recurrent and the feedforward model perform well using neuronal parameters typical for the auditory system. Performance is limited mainly by the temporal precision of the connections between the neurons.

MSC:

92C20 Neural biology
93A30 Mathematical modelling of systems (MSC2010)
Full Text: DOI

References:

[1] Aicher B, Tautz J (1990) Signal transmission through the substrate. J Comp Physiol A 166:345 · doi:10.1007/BF00204807
[2] Avendaño C, Deng L, Hermansky H, Gold B (2004) The analysis and representation of speech. In: Greenberg S, Ainsworth W, Popper A, Fay R (eds) Speech processing in the auditory system, chap. 2. Springer, New York, p. 63
[3] Barth F (1985) Neuroethology of the spider vibration sense. In: Barth F (ed) Neurobiology of arachnids, chap. 11. Springer, New York, p 203
[4] Barth F (1998) The vibrational sense of spiders. In: Hoy R, Popper A, Fay R (eds) Comparative hearing: insects, chap. 7. Springer, New York, p 228
[5] Barth F, Geethabali (1982) Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol A 148:175 · doi:10.1007/BF00619124
[6] Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161 · doi:10.1038/nature03867
[7] Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Gustav Fisher, Stuttgart
[8] Bleckmann H (1998) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay R, Popper A, Tavolga W (eds) Sensory biology of aquatic animals, chap. 24. Springer, New York, p 619
[9] Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination in the surface-feeding fish Aplocheilus lineatus–a prerequisite for prey localization?. J Comp Physiol A 143:485 · doi:10.1007/BF00609915
[10] Bleckmann H, Breithaubt T, Blickhan RJT (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs and crustaceans. J Comp Physiol A 168:749
[11] Bleckmann H, Borchard M, Horn P, Görner P (1994) Stimulus discrimination and wave source localization in fishing spiders (Dolomedes triton and D. okefinokensis). J Comp Physiol A 174:305 · doi:10.1007/BF00240213
[12] Borst M, Langner G, Palm G (2004) A biologically motivated network for phase extraction from complex sounds. Biol Cybern 90:98 · Zbl 1067.92016 · doi:10.1007/s00422-003-0459-x
[13] Bregman A (1990) Auditory scene analysis. MIT Press, Cambridge, MA
[14] Brownell P (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479 · doi:10.1126/science.197.4302.479
[15] Buell T, Hafter E (1991) Combination of binaural information across frequency bands. J Acoust Soc Am 90:1894 · doi:10.1121/1.401668
[16] Burkitt A (2006a) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95:1 · Zbl 1161.92315
[17] Burkitt A (2006b) A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol Cybern 95:97 · Zbl 1161.92314
[18] Burkitt A, Clark G (2001) Synchronization of the neural response to noise periodic synaptic input. Neural Comp 13:2639 · Zbl 1004.92006 · doi:10.1162/089976601317098475
[19] Cariani P (2001) Neural timing nets. Neur Netw 14:737 · doi:10.1016/S0893-6080(01)00056-9
[20] Cariani P (2003) Recurrent timing nets for auditory speech analysis. Proc Int Joint Conf Neural Netw 2:1575
[21] Cherry E (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975 · Zbl 0050.19406 · doi:10.1121/1.1907229
[22] Cooke M, Ellis D (2001) The auditory organization of speech and other sources in listeners and computational models. Speech Commun 35:141 · Zbl 0987.68797 · doi:10.1016/S0167-6393(00)00078-9
[23] Coombs S, Görner P, Münz He (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, New York
[24] Culling J, Summerfield Q (1995) Perceptual separation of concurrent speech sounds: absence of across-frequency grouping by common interaural delay. J Acoust Soc Am 98:785 · doi:10.1121/1.413571
[25] Dean I, Harper N, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684 · doi:10.1038/nn1541
[26] Demany L, Semal C (1988) Dichotic fusion of 2 tones one octave apart: evidence for internal octave templates. J Acoust Soc Am 83:687 · doi:10.1121/1.396164
[27] Deutsch D (1973) Octave generalization of specific interference effects in memory for tonal pitch. Percept Phychophys 13:271 · doi:10.3758/BF03214138
[28] Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529 · doi:10.1038/990101
[29] Elepfandt A (1986) Wave frequency recognition and absolute pitch for water waves in the clawed frog Xenopus laevis. J Comp Physiol A 158:235 · doi:10.1007/BF01338566
[30] Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:223 · doi:10.1103/RevModPhys.70.223
[31] Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, Cambridge · Zbl 1100.92501
[32] Grothe B, Klump G (2000) Temporal processing in sensory systems. Curr Opin Neurobiol 10:467 · doi:10.1016/S0959-4388(00)00115-X
[33] Hergenröder R, Barth F (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys). J Comp Physiol A 152:347 · doi:10.1007/BF00606240
[34] Hudspeth A, Corey D (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407 · doi:10.1073/pnas.74.6.2407
[35] Humphreys L (1939) Generalization as a function of method of reinforcement. J Exp Psych 25:361 · doi:10.1037/h0057941
[36] Ingham N, McAlpine D (2004) Spike-frequency adaptation in the inferior colliculus. J Neurophysiol 91:632 · doi:10.1152/jn.00779.2003
[37] Joris P, Schreiner C, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541 · doi:10.1152/physrev.00029.2003
[38] Kalmijn A (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay R, Popper A, Tavolga W (eds) Sensory biology of aquatic animals, chap. 4. Springer, New York, p 83
[39] Käse R, Bleckmann H (1987) Prey localization by surface ray-tracing: fish track bugs like oceanographers track storms. Experientia 43:290 · doi:10.1007/BF01945553
[40] Kempter R, Gerstner W, Van Hemmen J, Wagner H (1998a) Extracting oscillations: Neural coincidence detection with noise periodic spike input. Neural Comp 10:1987 · doi:10.1162/089976698300016945
[41] Kempter R, Gerstner W, Van Hemmen J (1998b) How the threshold of a neuron determines its capacity for coincidence detection. BioSys 48:105 · doi:10.1016/S0303-2647(98)00055-0
[42] Krishna B, Semple M (2000) Auditory temporal processing: response to sinusoidally amplitude-moulated tones in the inferior colliculus. J Neurophysiol 84:255
[43] Landolfa M, Barth F (1996) Vibrations in the orb web of the spider Nephilia clavipes: Cues for discrimination and orientation. J Comp Physiol A 179:493 · doi:10.1007/BF00192316
[44] Lang H (1980) Surface wave discrimination between prey and nonprey by the backswimmer Notonecta glauca L. (Hemiptera, Heteroptera). Beh Ecol Sociobiol 6:233 · doi:10.1007/BF00569205
[45] Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115 · doi:10.1016/0378-5955(92)90015-F
[46] Langner G, Schreiner C (1988) Periodicity coding in the inferior colliculus of the cat. i. neuronal mechanisms. J Neurophysiol 60:1799
[47] Licklider J (1951) A duplex theory of pitch perception. Experientia 7:128 · doi:10.1007/BF02156143
[48] Magal C, Schöller M, Tautz J, Casas J (2000) The role of leaf structure in vibration propagation. J Acoust Soc Am 108:2412 · doi:10.1121/1.1286098
[49] Masters W (1984) Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae). Beh Ecol Sociobiol 15:217 · doi:10.1007/BF00292978
[50] Masters W, Markl H, Moffat A (1986) Transmission of vibration in a spider’s web. In: Shear W (ed) Spiders: Webs, Behavior, and Evolution, Chap. 3. Stanford University Press, Stanford, p 49
[51] Meddis R, O’Mard L (1997) A unitary model of pitch perception. J Acoust Soc Am 102:1811 · doi:10.1121/1.420088
[52] Meddis R, O’Mard L (2006) Virtual pitch in a computational physiological model. J Acoust Soc Am 120:3861 · doi:10.1121/1.2372595
[53] Megela Simmons A, Ferragamo M (1993) Periodicity extraction in the anuran auditory nerve. J Comp Physiol A 172:57 · doi:10.1007/BF00214715
[54] Middleton J, Longtin A, Benda J, Maler L (2006) The cellular basis for parallel neural transmission of a high-frequency stimulus and its low-frequency envelope. Proc Natl Acad Sci USA 103:14596 · doi:10.1073/pnas.0604103103
[55] Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154 · doi:10.1038/16456
[56] Oertel D (1999) The role of timing in the brain stem auditory nuclei of vertebrates. Ann Rev Physiol 61:497 · doi:10.1146/annurev.physiol.61.1.497
[57] Rees A, Møller A (1983) Responses of neurons in the inferior colliculus of the rat to am and fm tones. Hear Res 10:301 · doi:10.1016/0378-5955(83)90095-3
[58] Rees A, Møller A (1987) Stimulus properties influencing the repsonses of inferior colliculus neurons to amplitude-modulated sounds. Hear Res 27:129 · doi:10.1016/0378-5955(87)90014-1
[59] Rees A, Palmer A (1989) Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise. J Acoust Soc Am 85:1978 · doi:10.1121/1.397851
[60] Schuller G (1984) Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol A 155:121 · doi:10.1007/BF00610937
[61] Schreiner C, Langner G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823
[62] Shannon R, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303 · doi:10.1126/science.270.5234.303
[63] Smith R, Zwislocki J (1975) Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybern 17:169 · doi:10.1007/BF00364166
[64] Smith J, Marsh J, Greenberg S, Brown W (1978) Human auditory frequency-following responses to a missing fundamental. Science 201:639 · doi:10.1126/science.675250
[65] Smith Z, Delgutte B, Oxenham A (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87 · doi:10.1038/416087a
[66] Speck-Hergenröder J, Barth F (1987) Tuning of vibration sensitive neurons in the central nervous system of a wandering spider, Cupiennius salei Keys. J Comp Physiol A 160:467 · doi:10.1007/BF00615080
[67] Trussell L (1999) Synaptic mechanisms for coding timing in auditory neurons. Ann Rev Physiol 61:477 · doi:10.1146/annurev.physiol.61.1.477
[68] Van Hemmen J (2001) Theory of synaptic plasticity. In: Moss F, Gielen S (eds) Handbook of biophysics, vol 4, Neuro-informatics and neural modelling, Chap. 18. Elsevier, Amsterdam, p 771
[69] Westerman L, Smith R (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249 · doi:10.1016/0378-5955(84)90032-7
[70] Yost W (1991) Auditory image perception and analysis: The basis for hearing. Hear Res 56:8 · doi:10.1016/0378-5955(91)90148-3
[71] Zhang S, Trussell L (1994) A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. J Neurophysiol 72:705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.