×

A dual-mixed finite element method for nonlinear incompressible elasticity with mixed boundary conditions. (English) Zbl 1173.65356

Summary: We consider the Hu-Washizu principle and propose a new dual-mixed finite element method for nonlinear incompressible plane elasticity with mixed boundary conditions. The approach extends a related previous work on the Dirichlet problem and imposes the Neumann (essential) boundary condition in a weak sense by means of an additional Lagrange multiplier. The resulting variational formulation becomes a twofold saddle point operator equation which, for convenience of the subsequent analysis, is shown to be equivalent to a nonlinear threefold saddle point problem. In this way, a slight generalization of the classical Babuška-Brezzi theory is applied to show the well-posedness of the continuous and discrete formulations, and to derive the corresponding a priori error estimates. In particular, the classical PEERS space is suitably enriched to define the associated Galerkin scheme. Next, we develop a local problems-based a posteriori error analysis and derive an implicit reliable and quasi-efficient estimate, and a fully explicit reliable one. Finally, several numerical results illustrating the good performance of the explicit a posteriori estimate for the adaptive computation of the discrete solutions are provided.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65J15 Numerical solutions to equations with nonlinear operators
74B20 Nonlinear elasticity
Full Text: DOI

References:

[1] Agouzal, A.; Thomas, J.-M., An extension theorem for equilibrium finite element spaces, Jpn. J. Indust. Appl. Math., 13, 2, 257-266 (1996) · Zbl 0860.65115
[2] Arnold, D. N.; Brezzi, F.; Douglas, J., PEERS: A new mixed finite element method for plane elasticity, Jpn. J. Appl. Math., 1, 347-367 (1984) · Zbl 0633.73074
[3] Arnold, D. N.; Douglas, J.; Gupta, C. P., A family of higher order mixed finite element methods for plane elasticity, Numer. Math., 45, 1-22 (1984) · Zbl 0558.73066
[4] Babuška, I.; Aziz, A. K., Survey lectures on the mathematical foundations of the finite element method, (Aziz, A. K., The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (1972), Academic Press: Academic Press New York) · Zbl 0268.65052
[5] Babuška, I.; Gatica, G. N., On the mixed finite element method with Lagrange multipliers, Numer. Methods Partial Differ. Equat., 19, 2, 192-210 (2003) · Zbl 1021.65056
[6] Bank, R. E.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comput., 44, 283-301 (1985) · Zbl 0569.65079
[7] Barrientos, M. A.; Gatica, G. N.; Stephan, E. P., A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate, Numer. Math., 91, 2, 197-222 (2002) · Zbl 1067.74062
[8] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag · Zbl 0788.73002
[9] Brink, U.; Stein, E., A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems, Comput. Methods Appl. Mech. Engrg., 161, 77-101 (1998) · Zbl 0943.74062
[10] Brink, U.; Stephan, E. P., Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity, Numer. Methods Partial Differ. Equat., 17, 79-92 (2001) · Zbl 0988.74072
[11] Carstensen, C., An a posteriori error estimate for a first-kind integral equation, Math. Comput., 66, 139-155 (1997) · Zbl 0854.65102
[12] Carstensen, C.; Dolzmann, G., A posteriori error estimates for mixed FEM in elasticity, Numer. Math., 81, 187-209 (1998) · Zbl 0928.74093
[13] Carstensen, C.; Dolzmann, G.; Funken, S. A.; Helm, D. S., Locking-free adaptive mixed finite element methods in linear elasticity, Comput. Methods Appl. Mech. Engrg., 190, 13-14, 1701-1718 (2000) · Zbl 1004.74068
[14] Carstensen, C.; Funken, S. A., A-posteriori error control in low-order finite element discretisations of incompressible stationary flow problems, Math. Comput., 70, 1353-1381 (2001) · Zbl 1014.76042
[15] Fortin, M.; Pierre, R., On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech. Engrg., 73, 341-350 (1989) · Zbl 0692.76002
[16] L.F. Gatica, Mixed finite element methods for nonlinear incompressible elasticity. Ph.D. Thesis, Universidad de Concepción, Chile, 2005 (in Spanish).; L.F. Gatica, Mixed finite element methods for nonlinear incompressible elasticity. Ph.D. Thesis, Universidad de Concepción, Chile, 2005 (in Spanish).
[17] Gatica, G. N., An application of Babuška-Brezzi’s theory to a class of variational problems, Appl. Anal., 75, 3-4, 297-303 (2000) · Zbl 1021.65030
[18] Gatica, G. N., Solvability and Galerkin approximations of a class of nonlinear operator equations, Z. Anal. Anwendungen, 21, 3, 761-781 (2002) · Zbl 1024.65044
[19] Gatica, G. N.; González, M.; Meddahi, S., A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: A-priori error analysis, Comput. Methods Appl. Mech. Engrg., 193, 9-11, 881-892 (2004) · Zbl 1053.76037
[20] Gatica, G. N.; González, M.; Meddahi, S., A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: A-posteriori error analysis, Comput. Methods Appl. Mech. Engrg., 193, 9-11, 893-911 (2004) · Zbl 1053.76038
[21] Gatica, G. N.; Heuer, N., A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity, SIAM J. Numer. Anal., 38, 2, 380-400 (2000) · Zbl 0992.74068
[22] Gatica, G. N.; Heuer, N.; Meddahi, S., On the numerical analysis of nonlinear twofold saddle point problems, IMA J. Numer. Anal., 23, 301-330 (2003) · Zbl 1028.65128
[23] Gatica, G. N.; Meddahi, S., A dual-dual mixed formulation for nonlinear exterior transmission problems, Math. Comput., 70, 236, 1461-1480 (2001) · Zbl 0980.65132
[24] Gatica, G. N.; Stephan, E. P., A mixed-FEM formulation for nonlinear incompressible elasticity in the plane, Numer. Methods Partial Differ. Equat., 18, 1, 105-128 (2002) · Zbl 1010.74062
[25] Gerritsma, M. I.; Phillips, T. N., Compatible spectral approximations for the velocity-pressure-stress formulation of the Stokes problem, SIAM J. Sci. Comput., 20, 4, 1530-1550 (1999) · Zbl 0932.76064
[26] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms (1986), Springer-Verlag · Zbl 0396.65070
[27] Grisvard, P., (Elliptic Problems in Non-Smooth Domains. Elliptic Problems in Non-Smooth Domains, Monographs and Studies in Mathematics, vol. 24 (1985), Pitman) · Zbl 0695.35060
[28] Grisvard, P., Problémes aux limites dans les polygones. Mode démploi. EDF, Bull. Direction Etudes Recherches, 1, Serie C, 21-59 (1986) · Zbl 0623.35031
[29] Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (2002) · Zbl 1123.78320
[30] Lions, J. L.; Magenes, E., Problèmes aux Limites non Homogènes et Applications I (1968), Dunod: Dunod Paris · Zbl 0165.10801
[31] Lonsing, M.; Verfürth, R., A posteriori error estimators for mixed finite element methods in linear elasticity, Numer. Math., 97, 4, 757-778 (2004) · Zbl 1088.74048
[32] Marchal, J. M.; Crochet, M. J., A new mixed finite element for calculating viscoelastic flows, J. Non-Newton. Fluid Mech., 26, 77-114 (1987) · Zbl 0637.76009
[33] Roberts, J. E.; Thomas, J. M., Mixed and Hybrid Methods, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis. Handbook of Numerical Analysis, Finite Element Methods (Part 1), vol. II (1991), North-Holland: North-Holland Amsterdam) · Zbl 0875.65090
[34] Verfürth, R., A Review of A Posteriori Error Estimation and Adaptative Mesh-Refinement Techniques (1996), Willey-Teubner: Willey-Teubner Chichester · Zbl 0853.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.