×

Experimental study of the argumental transverse vibration of a beam excited through intermittent elastic contact by a harmonic axial motion. (English) Zbl 1430.74082

Summary: The transverse vibration of a beam excited axially by a harmonic motion transmitted through intermittent elastic contact is experimentally studied. The beam’s configuration is clamped-(clamped-guided). It is shown that said transverse vibration can be considered essentially as the fundamental transverse mode of the beam and can occur when the frequency of the excitation is four or six times the frequency of said mode. The energy transfer between the excitation source and the beam occurs only when the beam is in certain spatial configurations. This constitutes an argumental phenomenon. Experimental results are given and compared with models.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
70K30 Nonlinear resonances for nonlinear problems in mechanics

References:

[1] Béthenod, M.: Sur l’entretien du mouvement d’un pendule au moyen d’un courant alternatif de fréquence élevée par rapport à sa fréquence propre. Comptes rendus hebdomadaires de l’Académie des sciences 207(19), 847-849 (1938). (in French) · JFM 64.0820.03
[2] Bogolioubov, N., Mitropolski, I.: Les méthodes asymptotiques en théorie des oscillations non linéaires. Gauthiers-Villars, Paris (1962) · Zbl 0247.34004
[3] Burney, S., Jager, L.G.: A method of determining the regions of instability of a column by a numerical method approach. J. Sound Vib. 15(1), 75-91 (1971). https://doi.org/10.1016/0022-460X(71)90361-0 · Zbl 0218.73064 · doi:10.1016/0022-460X(71)90361-0
[4] Cintra, D., Argoul, P.: Attractor’s capture probability in nonlinear argumental oscillators. Commun. Nonlin. Sci. Numer. Simul. 48(Supplement C), 150-169 (2017). https://doi.org/10.1016/j.cnsns.2016.12.023 · Zbl 1510.34061 · doi:10.1016/j.cnsns.2016.12.023
[5] Cintra, D., Argoul, P.: Non-linear argumental oscillators: stability criterion and approximate implicit analytic solution. Int. J. Non-Linear Mech. 94(Supplement C), 109-124 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.03.013 · doi:10.1016/j.ijnonlinmec.2017.03.013
[6] Cintra, D., Argoul, P.: Nonlinear argumental oscillators: a few examples of modulation via spatial position. J. Vib. Control 23(18), 2888-2911 (2017). https://doi.org/10.1177/1077546315623888 · doi:10.1177/1077546315623888
[7] Cintra, D., Cumunel, G., Argoul, P.: Modeling and numerical results for the argumental transverse vibration of a beam excited through permanent or intermittent elastic contact by a harmonic axial motion. Nonlin. Dyn. 95, 495 (2019). https://doi.org/10.1007/s11071-018-4578-2 · doi:10.1007/s11071-018-4578-2
[8] Cretin, B., Vernier, D.: Quantized amplitudes in a nonlinear resonant electrical circuit. In: 2009 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium, vols 1 and 2, vol. 1 & 2, pp. 797-800. Joint Meeting of the 23rd European Frequency and Time Forum/IEEE International Frequency Control Symposium, Besançon, France (2009). http://arxiv.org/ftp/arxiv/papers/0801/0801.1301.pdf
[9] Doubochinski, D.: Argumental oscillations. Macroscopic quantum effects. SciTech Library (2015). http://www.sciteclibrary.ru/rus/catalog/pages/15207.html
[10] Doubochinski, D., Doubochinski, J.: Amorçage argumentaire d’oscillations entretenues avec une série discrète d’amplitudes stables. E.D.F. Bulletin de la direction des études et recherches, série C mathématiques, informatique 3, 11-20 (1991). (in French) · Zbl 0759.70017
[11] Fey, R.H.B., Mallon, N.J., Kraaij, C.S., Nijmeijer, H.: Nonlinear resonances in an axially excited beam carrying a top mass: simulations and experiments. Nonlinear Dyn. 66(3, SI), 285-302 (2011). https://doi.org/10.1007/s11071-011-9959-8 · doi:10.1007/s11071-011-9959-8
[12] Huang, J., Hung, L.: Dynamic stability for a simply supported beam under periodic axial excitation. Int. J. Non-Linear Mech. 19(4), 287-301 (1984). https://doi.org/10.1016/0020-7462(84)90057-X · Zbl 0539.73052 · doi:10.1016/0020-7462(84)90057-X
[13] Li, M.: Analytical study on the dynamic response of a beam with axial force subjected to generalized support excitations. J. Sound Vib. 338, 199-216 (2015). https://doi.org/10.1016/j.jsv.2014.11.004 · doi:10.1016/j.jsv.2014.11.004
[14] Lu, Q., To, C., Huang, K.: Dynamic stability and bifurcation of an alternating load and magnetic field excited magnetoelastic beam. J. Sound Vib. 181(5), 873-891 (1995). https://doi.org/10.1006/jsvi.1995.0175 · doi:10.1006/jsvi.1995.0175
[15] Penner, D.I., Duboshinskii, D.B., Kozakov, M.I., Vermel’, A.S., Galkin, Y.V.: Asynchronous excitation of undamped oscillations. Phys. USP. 16(1), 158-160 (1973). https://doi.org/10.1070/PU1973v016n01ABEH005156 · doi:10.1070/PU1973v016n01ABEH005156
[16] Pratiher, B., Dwivedy, S.K.: Nonlinear response of a flexible cartesian manipulator with payload and pulsating axial force. Nonlinear Dyn. 57(1), 177-195 (2009). https://doi.org/10.1007/s11071-008-9431-6 · Zbl 1176.74090 · doi:10.1007/s11071-008-9431-6
[17] Shibata, A., Ohishi, S., Yabuno, H.: Passive method for controlling the nonlinear characteristics in a parametrically excited hinged-hinged beam by the addition of a linear spring. J. Sound Vib. 350, 111-122 (2015). https://doi.org/10.1016/j.jsv.2015.03.055 · doi:10.1016/j.jsv.2015.03.055
[18] Treilhou, J., Coutelier, J., Thocaven, J., Jacquez, C.: Payload motions detected by balloon-borne fluxgate-type magnetometers. Adv. Space Res. 26(9), 1423-1426 (2000) · doi:10.1016/S0273-1177(00)00072-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.