×

Mixed displacement-rotation-pressure formulations for linear elasticity. (English) Zbl 1440.74457

Summary: We propose a new locking-free family of mixed finite element and finite volume element methods for the approximation of linear elastostatics, formulated in terms of displacement, rotation vector, and pressure. The unique solvability of the three-field continuous formulation, as well as the well-definiteness and stability of the proposed Galerkin and Petrov-Galerkin methods, is established thanks to the Babuška-Brezzi theory. Optimal a priori error estimates are derived using norms robust with respect to the Lamé constants, turning these numerical methods particularly appealing for nearly incompressible materials. We exemplify the accuracy (in a suitably weighted norm), as well the applicability of the new formulation and the mixed schemes by conducting a number of computational tests in 2D and 3D, also including cases not covered by our theoretical analysis.

MSC:

74S10 Finite volume methods applied to problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
74B05 Classical linear elasticity

References:

[1] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0634.73056
[2] Hu, H., On some variational principles in the theory of elasticity and the theory of plasticity, Acta Phys. Sin., 10, 3, 259-290 (1954)
[3] Washizu, K., Variational Methods in Elasticity & Plasticity (1982), Pergamon Press: Pergamon Press New York · Zbl 0164.26001
[4] Simo, J. C.; Rifai, M. S., A class of assumed strain method and the methods of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[5] Pian, T. H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Int. J. Numer. Methods Engrg., 20, 9, 1685-1695 (1984) · Zbl 0544.73095
[6] Kasper, E. P.; Taylor, R. L., A mixed-enhanced strain method, Part I: geometrically linear problems, Comput. Struct., 75, 3, 237-250 (2000)
[7] Romano, G.; Marrotti de Sciarra, F.; Diaco, M., Well-posedness and numerical performances of the strain gap method, Int. J. Numer. Methods Engrg., 51, 1, 103-126 (2001) · Zbl 1049.74052
[8] Andelfinger, U.; Ramm, E., EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements, Int. J. Numer. Methods Engrg., 36, 8, 1311-1337 (1993) · Zbl 0772.73071
[9] Braess, D.; Carstensen, C.; Reddy, B. D., Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numer. Math., 96, 3, 461-479 (2004) · Zbl 1050.65097
[10] Djoko, J. K.; Lamichhane, B. P.; Reddy, B. D.; Wohlmuth, B. I., Conditions for equivalence between the Hu-Washizu and related formulations and computational behavior in the incompressible limit, Comput. Methods Appl. Mech. Engrg., 195, 33-36, 4161-4178 (2006) · Zbl 1123.74020
[11] Lamichhane, B. P.; Reddy, B. D.; Wohlmuth, B. I., Convergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation, Numer. Math., 104, 2, 151-175 (2006) · Zbl 1175.74083
[12] Arnold, D. N.; Falk, R. S., A new mixed formulation for elasticity, Numer. Math., 53, 1-2, 13-30 (1988) · Zbl 0621.73102
[13] Bertóti, E., Dual-mixed \(h p\) finite element methods using first-order stress functions and rotations, Comput. Mech., 26, 39-51 (2000) · Zbl 0980.74057
[14] Boffi, D.; Brezzi, F.; Fortin, M., Reduced symmetry elements in linear elasticity, Commun. Pure Appl. Anal., 8, 1, 95-121 (2009) · Zbl 1154.74041
[15] Gatica, G. N.; Márquez, A.; Meddahi, S., An augmented mixed finite element method for 3D linear elasticity problems, J. Comput. Appl. Math., 231, 526-540 (2009) · Zbl 1167.74042
[16] Gatica, G. N., Analysis of a new augmented mixed finite element method for linear elasticity allowing \(RT_0 - P_1 - P_0\) approximations, ESAIM Math. Model. Numer. Anal., 40, 1, 1-28 (2006) · Zbl 1330.74155
[17] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002
[18] Cai, Z.; Manteuffel, T.; McCormick, S., First-order system least squares for the Stokes equations, with application to linear elasticity, SIAM J. Numer. Anal., 34, 5, 1727-1741 (1997) · Zbl 0901.76052
[19] Bacuta, C.; Qirko, K., A saddle point least squares approach to mixed methods, Comput. Math. Appl., 70, 12, 2920-2932 (2015) · Zbl 1443.65307
[20] Cai, Z., Least squares for the perturbed Stokes equations and the Reissner-Mindlin plate, SIAM J. Numer. Anal., 38, 5, 1561-1581 (2006) · Zbl 1003.76047
[21] Duan, H.; Gao, S.; Jiang, B.; Tan, R. C.E., Analysis of a least-squares finite element method for the thin plate problem, Appl. Numer. Math., 59, 5, 976-987 (2009) · Zbl 1159.74037
[22] Beirão da Veiga, L.; Mora, D.; Rodríguez, R., Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model, Numer. Methods Partial Differential Equations, 29, 40-63 (2013) · Zbl 1294.74061
[23] Hughes, T. J.R.; Masud, A.; Harari, I., Numerical assessment of some membrane elements with drilling degrees of freedom, Comput. Struct., 55, 2, 297-314 (1995) · Zbl 0918.73146
[24] Alvarez, M.; Gatica, G. N.; Ruiz-Baier, R., Analysis of a vorticity-based fully-mixed formulation for the 3D Brinkman-Darcy problem, Comput. Methods Appl. Mech. Engrg., 307, 68-95 (2016) · Zbl 1436.76020
[25] Amara, M.; Chacón Vera, E.; Trujillo, D., Vorticity-velocity-pressure formulation for Stokes problem, Math. Comp., 73, 248, 1673-1697 (2004) · Zbl 1068.76047
[26] Anaya, V.; Mora, D.; Oyarzúa, R.; Ruiz-Baier, R., A priori and a posteriori error analysis for a mixed scheme for the Brinkman problem, Numer. Math., 133, 781-817 (2016) · Zbl 1396.76048
[27] Anaya, V.; Mora, D.; Ruiz-Baier, R., Pure vorticity formulation and Galerkin discretization for the Brinkman equations, IMA J. Numer. Anal., 37, 4, 2020-2041 (2017) · Zbl 1433.76067
[28] Wang, X.; Bathe, K.-J., On mixed elements for acoustic fluid-structure interactions, Math. Models Methods Appl. Sci., 7, 3, 329-343 (1997) · Zbl 0881.76053
[29] Carstensen, C.; Nataraj, N.; Pani, A. K., Comparison results and unified analysis for first-order finite volume element methods for a poisson model problem, IMA J. Numer. Anal., 36, 3, 1120-1142 (2016) · Zbl 1433.65254
[30] He, G.; He, Y.; Feng, X., Finite volume method based on stabilized finite elements for the nonstationary Navier-Stokes problem, Numer. Methods Partial Differential Equations, 23, 1167-1191 (2007) · Zbl 1127.76036
[31] Li, J.; Chen, Z., A new stabilized finite volume method for the stationary Stokes equations, Adv. Comput. Math., 30, 141-152 (2009) · Zbl 1187.65120
[32] Quarteroni, A.; Ruiz-Baier, R., Analysis of a finite volume element method for the Stokes problem, Numer. Math., 118, 737-764 (2011) · Zbl 1230.65130
[33] Wen, J.; He, Y.; Yang, J., Multiscale enrichment of a finite volume element method for the stationary Navier-Stokes problem, Int. J. Comp. Math., 90, 1938-1957 (2013) · Zbl 1291.35196
[34] Luo, Z.; Teng, F., A fully discrete SCNFVE formulation for the non-stationary Navier-Stokes equations, Comput. Model. Eng. Sci., 101, 33-58 (2014) · Zbl 1356.76190
[35] Bürger, R.; Kumar, S.; Ruiz-Baier, R., Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation, J. Comput. Phys., 299, 446-471 (2015) · Zbl 1351.76098
[36] Feistauer, M.; Felcman, J.; Lukác̆ová-Medvid’ová, M., Combined finite element-finite volume solution of compressible flow, J. Comput. Appl. Math., 63, 179-199 (1995) · Zbl 0852.76040
[37] Ruiz-Baier, R.; Lunati, I., Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models, J. Comput. Phys., 322, 666-688 (2016) · Zbl 1351.76079
[38] Wu, Y.; Xie, X.; Chen, L., Hybrid stress finite volume method for linear elasticity problems, Int. J. Numer. Anal. Model., 10, 3, 634-656 (2013) · Zbl 1421.74106
[39] Lamichhane, B. P., Inf-sup stable finite-element pairs based on dual meshes and bases for nearly incompressible elasticity, IMA J. Numer. Anal., 29, 404-420 (2009) · Zbl 1160.74046
[40] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0585.65077
[41] Arnold, D. N.; Falk, R. S.; Winther, R., Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Amer. Math. Soc., 47, 2, 281-354 (2010) · Zbl 1207.65134
[42] Gatica, G. N., (A Simple Introduction To the Mixed Finite Element Method. Theory and Applications. A Simple Introduction To the Mixed Finite Element Method. Theory and Applications, Springer Briefs in Mathematics (2014), Springer: Springer Cham Heidelberg New York Dordrecht London) · Zbl 1293.65152
[43] Grisvard, P., Problèmes aux limites dans les polygones. Mode d’emploi, EDF, Bull. Dir. Etud. Rech. C, 1, 21-59 (1986) · Zbl 0623.35031
[44] Rössle, A., Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners, J. Elasticity, 60, 1, 57-75 (2000) · Zbl 0976.74019
[45] Brenner, S. C.; Sung, L., Linear finite element methods for planar linear elasticity, Math. Comp., 59, 200, 321-338 (1992) · Zbl 0766.73060
[46] Caucao, S.; Mora, D.; Oyarzúa, R., A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density, IMA J. Numer. Anal., 36, 2, 947-983 (2016) · Zbl 1433.76072
[47] Dohrmann, C. R., Preconditioning of saddle-point systems by substructuring and penalty approach, (Widlund, O. F.; Keyes, D. E., Domain Decomposition Methods in Science and Engineering XVI (2007), Springer-Verlag: Springer-Verlag New York)
[48] Lamichhane, B. P., Higher Order Mortar Finite Elements with Dual Lagrange Multiplier Spaces and Applications (2006), Universität Stuttgart: Universität Stuttgart Stuttgart, (Ph.D. thesis) · Zbl 1196.65012
[49] Cook, R. D., Improved two-dimensional finite element, ASCE J. Struct. Div., ST9, 1851-1863 (1974)
[50] Fredriksson, M.; Ottosen, N. S., Fast and accurate node quadrilateral, Int. J. Numer. Methods Engrg., 61, 1809-1834 (2004) · Zbl 1075.74644
[51] Ko, Y.; Lee, P. S.; Bathe, K. J., The MITC4+ shell element and its performance, Comput. Struct., 169, 57-68 (2016)
[52] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel alpha finite element method \(( \alpha\) FEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Comput. Methods Appl. Mech. Engrg., 197, 3883-3897 (2008) · Zbl 1194.74433
[53] Nakshatrala, K. B.; Masud, A.; Hjelmstad, K. D., On finite element formulations for nearly incompressible linear elasticity, Comput. Mech., 41, 547-561 (2008) · Zbl 1162.74472
[54] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344 (1984) · Zbl 0593.76039
[55] Baroli, D.; Quarteroni, A.; Ruiz-Baier, R., Convergence of a stabilized discontinuous Galerkin method for incompressible nonlinear elasticity, Adv. Comput. Math., 39, 425-443 (2013) · Zbl 1271.74030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.