×

\(H^1, H(\text{curl})\) and \(H(\text{div})\) conforming elements on polygon-based prisms and cones. (English) Zbl 1446.65163

Summary: The conation and extrusion techniques were proposed by A. Bossavit [Math. Comput. Simul. 80, No. 8, 1567–1577 (2010; Zbl 1196.78024)] for constructing \((m+1)\)-dimensional Whitney forms on prisms/cones from \(m\)-dimensional ones defined on the base shape. We combine the conation and extrusion techniques with the 2D polygonal \(H(\text{div})\) conforming finite element proposed by W. Chen and Y. Wang [Math. Comput. 86, No. 307, 2053–2087 (2017; Zbl 1364.65244)], and construct the lowest-order \(H^1, H(\text{curl})\) and \(H(\text{div})\) conforming elements on polygon-based prisms and cones. The elements have optimal approximation rates. Despite of the relatively sophisticated theoretical analysis, the construction itself is easy to implement. As an example, we provide a 100-line Matlab code for evaluating the shape functions of \(H^1, H(\text{curl})\) and \(H(\text{div})\) conforming elements as well as their exterior derivatives on polygon-based cones. Note that all convex and some non-convex 3D polyhedra can be divided into polygon-based cones by connecting the vertices with a chosen interior point. Thus our construction also provides composite elements for all such polyhedra.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs

Software:

Matlab
Full Text: DOI

References:

[1] Abraham, R.; Marsden, JE; Ratiu, T., Manifolds, Tensor Analysis, and Applications (1988), New York: Springer, New York · Zbl 0875.58002
[2] Arnold, DN; Falk, RS; Winther, R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155 (2006) · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[3] Basic principles of virtual element methods, Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A, Math. Model. Methods Appl. Sci., 23, 199-214 (2013) · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[4] Bonelle, J.; Di Pietro, D.; Ern, A., Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes, Comput. Aided Geom. D, 35, 36, 27-41 (2015) · Zbl 1417.65197 · doi:10.1016/j.cagd.2015.03.015
[5] Bossavit, A.; Whiteman, J., Mixed finite elements and the complex of Whitney forms, The Mathematics of Finite Elements and Applications VI, 137-144 (1988), London: Academic Press, London · Zbl 0692.65053
[6] Bossavit, A., Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEEE Proc., 135, 493-500 (1988) · Zbl 0674.93029 · doi:10.1049/ip-d.1988.0075
[7] Bossavit, A., A uniform rational for Whitney forms on various supporting shapes, Math. Comput. Simul., 80, 1567-1577 (2010) · Zbl 1196.78024 · doi:10.1016/j.matcom.2008.11.005
[8] Chen, W.; Wang, Y., Minimal degree \(H(curl)\) and \(H(div)\) conforming finite elements on polytopal meshes, Math. Comp., 307, 2053-2087 (2017) · Zbl 1364.65244
[9] Christiansen, S., A construction of spaces of compatible differential forms on cellular complexes, Math. Models Methods Appl. Sci., 18, 739-757 (2008) · Zbl 1153.65005 · doi:10.1142/S021820250800284X
[10] Di Pietro, DA; Ern, A.; Lemaire, S., An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math., 14, 461-472 (2014) · Zbl 1304.65248 · doi:10.1515/cmam-2014-0018
[11] Di Pietro, DA; Ern, A., A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng., 283, 1-21 (2015) · Zbl 1423.74876 · doi:10.1016/j.cma.2014.09.009
[12] Di Pietro, DA; Ern, A., Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes, IMA J. Numer. Anal., 37, 40-63 (2017) · Zbl 1433.65285 · doi:10.1093/imanum/drw003
[13] Du, Q.; Faber, V.; Gunzburger, M., Centroidal voronoi tessellations: applications and algorithms, SIAM Rev., 41, 637-676 (1999) · Zbl 0983.65021 · doi:10.1137/S0036144599352836
[14] Floater, MS, Mean value coordinates, Comput. Aided Geom. Des., 20, 19-27 (2003) · Zbl 1069.65553 · doi:10.1016/S0167-8396(03)00002-5
[15] Floater, MS, Generalized barycentric coordinates and applications, Acta Numer., 24, 161-214 (2015) · Zbl 1317.65065 · doi:10.1017/S0962492914000129
[16] Floater, M.; Gillette, A.; Sukumar, N., Gradient bounds for Wachspress coordinates on polytopes, SIAM J. Numer. Anal., 52, 515-532 (2014) · Zbl 1292.65006 · doi:10.1137/130925712
[17] Floater, MS; Kós, G.; Reimers, M., Mean value coordinates in 3D, Comput. Aided Geom. Des., 22, 623-631 (2005) · Zbl 1080.52010 · doi:10.1016/j.cagd.2005.06.004
[18] Frankel, T., The Geometry of Physics: An Introduction (2004), New York: Cambridge University Press, New York · Zbl 1049.58001
[19] Gillette, A.; Rand, A.; Bajaj, C., Error estimates for generalized barycentric interpolation, Adv. Comput. Math., 37, 417-439 (2012) · Zbl 1259.65013 · doi:10.1007/s10444-011-9218-z
[20] Gillette, A.; Rand, A.; Bajaj, C., Construction of scalar and vector finite element families on polygonal and polyhedral meshes, Comput. Methods Appl. Math., 16, 667-683 (2016) · Zbl 1348.65163 · doi:10.1515/cmam-2016-0019
[21] Grǎdinaru, V.: Whitney elements on sparse grids. Dissertation, Universität Tübingen (2002)
[22] Grǎdinaru, V.; Hiptmair, R., Whitney elements on pyramids. ETNA, 8, 154-168 (1999) · Zbl 0970.65120
[23] Hiptmair, R., Canonical construction of finite elements, Math. Comput., 68, 1325-1346 (1999) · Zbl 0938.65132 · doi:10.1090/S0025-5718-99-01166-7
[24] Hirani, A.: Discrete Exterior Calculus. Ph.D. Thesis, CalTech (2003)
[25] Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26, Article 71 (2007)
[26] Nédélec, JC, Mixed finite element in \({\mathbb{R}}^3\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[27] Nédélec, JC, A new family of mixed finite elements in \({\mathbb{R}}^3\), Numer. Math., 50, 57-81 (1986) · Zbl 0625.65107 · doi:10.1007/BF01389668
[28] Raviart, P., Thomas, J.: A Mixed Finite Element Method for Second Order Elliptic Problems. Springer Lecture Notes in Mathematics, vol. 606, pp. 292-315. Springer, New York (1977) · Zbl 0362.65089
[29] Sibon, R., A vector identity for the Dirichlet tessellation, Math. Proc. Camb. Philos. Soc., 87, 151-155 (1980) · Zbl 0466.52010 · doi:10.1017/S0305004100056589
[30] Wachspress, EL, A Rational Finite Element Basis (1975), Cambridge: Academic Press, Cambridge · Zbl 0322.65001
[31] Wachspress, EL, Barycentric coordinates for polytopes, Comput. Aided Geom. Des., 61, 3319-3321 (2011) · Zbl 1222.65127
[32] Wang, J.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[33] Wang, J.; Ye, X., A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput., 83, 2101-2126 (2014) · Zbl 1308.65202 · doi:10.1090/S0025-5718-2014-02852-4
[34] Warren, J., Barycentric coordinates for convex polytopes, Adv. Comput. Math., 6, 97-108 (1996) · Zbl 0873.52013 · doi:10.1007/BF02127699
[35] Whitney, H., Geometric Integration Theory (1957), Princeton: Princeton University Press, Princeton · Zbl 0083.28204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.