×

Average sampling expansions from regular and irregular samples over shift-invariant subspaces on LCA groups. (English) Zbl 1508.94051

Let \(G\) be a second countable, locally compact abelian group and \( H\) a countable closed discrete subgroup with compact quotient \(G/H\). One defines a (principal) shift-invariant subspace \(V_\varphi=\overline{\mathrm{span}}\{\varphi(\cdot-k): k\in H\}\subset L^2(G)\).
The most general result of this work (Theorem 4.7) provides reconstruction in terms of shift-specific average samples. It does require that \(G\) is compactly generated, and thus isomorphic to \(\mathbb{R}^a\times\mathbb{Z}^b\times \mathbb{T}^c\times F_1\times F\) where \(F_1\) is finite and \(F\) is compact. It is assumed that \(a\) or \(c\) is nonzero (in particular, \(G\) is not discrete) and that there is a compact symmetric neighborhood \(\widetilde{N}\) of the identity of \(\widehat{G}\) such that \(|\sum_{j\neq h\in H} \bar{c}(h) c(j)\int_{\tilde{N}} \langle h-j,\gamma\rangle d\gamma|\leq \alpha\|c\|^2\) for all \(c\in \ell^2(H)\) (\(0<\alpha<|\widetilde{N}|\)). Here, \(\langle \cdot,\cdot\rangle\) is the dual pairing on \((G,\widehat{G})\). This assumption holds for \(G=\mathbb{R}^d\).
Suppose that \(\{\varphi(\cdot-h): h\in H\}\) forms a frame for \(V_\varphi\) and that there is a \(\beta>0\) such that \(\widehat\varphi(\gamma)>\beta\), \(\gamma\in \widetilde{N}\). Suppose also that \[ \max\{ \sup_{j\in H}\sum_{h\in H} |\varphi(h-x-j)-\varphi(h-j)|,\sup_{h\in H}\sum_{j\in H} |\varphi(h-x-j)-\varphi(h-j)|\}\leq L\, \] and that \(\sum_{h\in H} \sum_{j\in H} |\varphi(h-j)|^2 <\infty\). Then there is a frame \(\{S_j\}_{h\in H}\) of \(V_\varphi\) such that each \(f\in V_\varphi\) admits an expansion \[ f(x)=\sum_{h\in H} (f\ast \omega_h)(h) S_h(x),\quad x\in G\, . \]
A simpler, more concrete version (Theorem 4.4) that applies without the restriction on the structure of \(G\) is described as follows. Define \(E_\varphi=\{\gamma\in \widehat{G}: P_\varphi(\gamma)>0\}\) where \(P_\varphi(\gamma)=\sum_{\lambda\in H^\bot}|\widehat\varphi(\gamma+\lambda)|^2\) (\(\gamma\in \widehat{G}\)). A preliminary result (Theorem 2.4) states that for \(\varphi\in L^2(G)\), \(\{\varphi(\cdot-h)\}_{h\in H}\) forms a frame for \(V_\varphi\) if and only if there are constants \(0<A\leq B<\infty\) such that \(A\leq P_\varphi(\gamma)\leq B\) a.e. on \(E_\varphi\).
Assume this, and let \(\omega\in L^1\cap L^2 (G)\) be compactly supported. Theorem 4.4 states that the following are equivalent:
(i)
There exists a frame \(\{S(\cdot -h): h\in H\}\) for \(V_\varphi\) such that for all \(f\in V_\varphi\), \(f(x)=\sum_{h\in H} (f\ast\omega)(h) S(x-h)\) with convergence in \(L^2\) and in \(L^\infty\), and
(ii)
there exist \(0<A<B<\infty\) such that \(A\chi_{E_\varphi}\leq |\Psi_\omega|\leq B\chi_{E_\varphi}\) a.e., where \(\Psi_\omega(\gamma)=\sum_{h\in H} (\varphi\ast\omega)(h)\langle -h,\gamma\rangle\).

Several preliminary results are provided that tie sampling in with the structure of \(G\). Some of these are quantified in terms of the Zak transform of \(\varphi\) (with respect to \(H\)) defined by \(Z_\varphi(x,\gamma)=\sum_{h\in H} \varphi(x+h) \langle -h,\gamma\rangle\), \(x\in G\), \(\gamma\in \widehat{G}\). Just as in the case of \(L^2(\mathbb{R})\), the Zak transform satisfies a quasi-periodicity property that plays a role.

MSC:

94A20 Sampling theory in information and communication theory
42C15 General harmonic expansions, frames
Full Text: DOI

References:

[1] Agora, E.; Antezana, J.; Cabrelli, C., Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups, Adv. Math., 285, 454-477 (2015) · Zbl 1357.43005 · doi:10.1016/j.aim.2015.08.006
[2] Aldroubi, A., Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces, Appl. Comput. Harmon. Anal., 13, 151-161 (2002) · Zbl 1016.42022 · doi:10.1016/S1063-5203(02)00503-1
[3] Aldroubi, A.; Gröchenig, K., Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43, 4, 585-620 (2001) · Zbl 0995.42022 · doi:10.1137/S0036144501386986
[4] Aldroubi, A.; Sun, Q.; Tang, WS, Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces, J. Fourier Anal. Appl., 11, 2, 215-244 (2005) · Zbl 1095.42022 · doi:10.1007/s00041-005-4003-3
[5] Benedetto, J. J., Walnut, D. F.: Gabor frames for \(L^2\) and related spaces, in Wavelets: Mathematics and Applications, J. J. Benedetto and M. W. Frazier Eds., CRC Press, Boca Raton, FI.(1994) · Zbl 0887.42025
[6] Cabrelli, C.; Paternostro, V., Shift-invariant spaces on LCA groups, J. Funct. Anal., 258, 2034-2059 (2010) · Zbl 1190.43003 · doi:10.1016/j.jfa.2009.11.013
[7] Christensen, O.: An Introduction to frames and Riesz bases, Birkhauser. (2016) · Zbl 1348.42033
[8] Christensen, O.; Goh, SS, The unitary extension principle on locally compact abelian groups, Appl. Comput. Harmon. Anal., 47, 1, 1-29 (2019) · Zbl 1440.42149 · doi:10.1016/j.acha.2017.07.004
[9] Devaraj, P.; Yugesh, S., A local weighted average sampling and reconstruction theorem over shift invariant subspaces, RM, 71, 319-332 (2017) · Zbl 1407.94061
[10] Devaraj, P.; Ankush, KG; Yugesh, S., Average convolution sampling over shift-invariant spaces, Complex Anal. Oper. Theory, 16, 20 (2022) · Zbl 1482.94035 · doi:10.1007/s11785-021-01165-9
[11] Ericsson, S., Generalized sampling in shift invariant spaces with frames, Acta Math. Sin. Engl. Ser., 28, 9, 1823-1844 (2012) · Zbl 1264.94084 · doi:10.1007/s10114-012-1235-4
[12] Feichtinger, H. G., Gröchenig, K.: Theory and practice of irregular sampling, in Wavelets: Mathematics and Applications, J. J. Benedetto and M. W. Frazier Eds., CRC Press, (1994) 305-363 · Zbl 1090.94524
[13] Feichtinger, HG; Pandey, SS, Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group, J. Math. Anal. Appl., 279, 2, 380-397 (2003) · Zbl 1015.43003 · doi:10.1016/S0022-247X(02)00576-0
[14] Führ, H.; Gröchenig, K., Sampling theorems on locally compact groups from oscillation estimates, Math. Z., 255, 177-194 (2007) · Zbl 1132.43005 · doi:10.1007/s00209-006-0019-x
[15] García, AG; Hernández-Medina, MA; Pérez-Villalón, G., Generalized sampling in shift-invariant spaces with multiple stable generators, J. Math. Anal. Appl., 337, 69-84 (2008) · Zbl 1133.42048 · doi:10.1016/j.jmaa.2007.03.083
[16] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis I, Second Edition, Springer-Verlag. (1979)
[17] García, AG; Hernández-Medina, MA; Pérez-Villalón, G., Sampling in unitary invariant subspaces associated to LCA groups, RM, 72, 1725-1745 (2017) · Zbl 1385.22002
[18] García, AG; Kim, JM; Kwon, KH; Yoon, GJ, Multi-channel sampling on shift-invariant subspaces with frame generators, Int. J. Wavelets Multiresolut. Inf. Process., 10, 1, 1250003 (2012) · Zbl 1269.42022 · doi:10.1142/S0219691311004456
[19] García, AG; Munoz-Bouzo, MJ; Pérez-Villalón, G., Regular multivariate sampling and approximation in \(L^p\) shift-invariant spaces, J. Math. Anal. Appl., 380, 2, 607-627 (2011) · Zbl 1221.94036 · doi:10.1016/j.jmaa.2011.03.013
[20] García, AG; Pérez-Villalón, G., Dual frames in \(L^2(0,1)\) connected with generalized sampling in shift-invariant spaces, Appl. Comput. Harmon. Anal., 20, 3, 422-433 (2006) · Zbl 1090.94012 · doi:10.1016/j.acha.2005.10.001
[21] García, AG; Pérez-Villalón, G., Generalized irregular sampling in shift-invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process., 5, 3, 369-387 (2007) · Zbl 1213.42107 · doi:10.1142/S021969130700180X
[22] García, AG; Pérez-Villalón, G., Multivariate generalized sampling in shift-invariant spaces and its approximation properties, J. Math. Anal. Appl., 355, 1, 397-413 (2009) · Zbl 1168.42003 · doi:10.1016/j.jmaa.2009.01.057
[23] Gröchenig, K., Reconstruction algorithms in irregular sampling, Math. Comput., 59, 181-194 (1992) · Zbl 0756.65159 · doi:10.1090/S0025-5718-1992-1134729-0
[24] Han, D.; Nashed, MZ; Sun, Q., Sampling expansions in reproducing kernel Hilbert and Banach spaces, Numer. Funct. Anal. Optim., 30, 971-987 (2009) · Zbl 1183.42032 · doi:10.1080/01630560903408606
[25] Higgins, JR, Sampling theory for Paley-Wiener spaces in the Riesz bases setting, Proc. R. Irish Acad. Sect. A Math. Phys. Sci., 94A, 2, 219-236 (1994) · Zbl 0845.42020
[26] Hong, YM; Kim, JM; Kwon, KH; Lee, EH, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process., 5, 5, 753-767 (2007) · Zbl 1213.42111 · doi:10.1142/S0219691307002038
[27] Kang, S.; Kim, JM; Kwon, KH, Asymmetric multi-channel sampling in shift invariant spaces, J. Math. Anal. Appl., 367, 20-28 (2010) · Zbl 1257.94012 · doi:10.1016/j.jmaa.2009.12.005
[28] Kang, S.; Kwon, KH, Generalized average sampling in shift invariant spaces, J. Math. Anal. Appl., 377, 70-78 (2011) · Zbl 1218.94031 · doi:10.1016/j.jmaa.2010.10.013
[29] Kim, JM; Kwon, KH, Sampling expansion in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process., 6, 2, 223-248 (2008) · Zbl 1268.42060 · doi:10.1142/S021969130800232X
[30] Li, R., Liu, B., Liu, R., Zhang, Q.: Nonuniform sampling in principal shift-invariant subspaces of mixed Lebesgue spaces \(L^{p,q}({\mathbb{R}}^{d+1}).\) J. Math. Anal. Appl. 453(2) (2017) 928-941 · Zbl 1421.42012
[31] Nashed, MZ; Sun, Q.; Xian, J., Convolution sampling and reconstruction of signals in a reproducing kernel subspace, Proc. Am. Math. Soc., 141, 6, 1995-2007 (2013) · Zbl 1275.42050 · doi:10.1090/S0002-9939-2012-11644-2
[32] Papoulis, A., Generalized sampling expansion, IEEE Trans. Circuits Syst., 24, 11, 652-654 (1977) · Zbl 0377.42006 · doi:10.1109/TCS.1977.1084284
[33] Pesenson, I., Sampling of Paley-Wiener functions on stratified groups, J. Fourier Anal. Appl., 4, 3, 271-281 (1998) · Zbl 0930.43009 · doi:10.1007/BF02476027
[34] Rudin, W.: Fourier analysis on groups, Wiley Classics Library (1990) · Zbl 0698.43001
[35] Šikić, H.; Wilson, EN, Lattice invariant subspaces and sampling, Appl. Comput. Harmon. Anal., 31, 26-43 (2011) · Zbl 1219.43005 · doi:10.1016/j.acha.2010.09.006
[36] Sun, W.; Zhou, X., Reconstruction of band-limited functions from local averages, Constr. Approx., 18, 205-222 (2002) · Zbl 1002.42022 · doi:10.1007/s00365-001-0011-y
[37] Sun, W.; Zhou, X., Reconstruction of band-limited signals from local averages, IEEE Trans. Inf. Theory, 48, 11, 2955-2963 (2002) · Zbl 1062.94538 · doi:10.1109/TIT.2002.804047
[38] Sun, W.; Zhou, X., Average sampling in spline subspaces, Appl. Math. Lett., 15, 2, 233-237 (2002) · Zbl 0998.94518 · doi:10.1016/S0893-9659(01)00123-9
[39] Sun, W.; Zhou, X., Reconstruction of functions in spline subspaces from local averages, Proc. Am. Math. Soc., 131, 8, 2561-2571 (2003) · Zbl 1026.94004 · doi:10.1090/S0002-9939-03-07082-5
[40] Sun, W.; Zhou, X., Average sampling in shift invariant subspaces with symmetric averaging functions, J. Math. Anal. Appl., 287, 1, 279-295 (2003) · Zbl 1029.94009 · doi:10.1016/S0022-247X(03)00558-4
[41] Yao, K., Applications of reproducing kernal Hilbert spaces-Bandlimited signal models, Inf. Control, 11, 429-444 (1967) · Zbl 0207.19004 · doi:10.1016/S0019-9958(67)90650-X
[42] Zhou, X.; Sun, W., On the sampling theorem for wavelets subspaces, J. Fourier Anal. Appl., 5, 4, 347-354 (1999) · Zbl 0931.42022 · doi:10.1007/BF01259375
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.