×

Finite element approximation of nonlinear elliptic problems with discontinuous coefficients. (English) Zbl 0712.65097

The authors’ abstract states:
“The paper presents a detailed theory of the finite element solution of second-order nonlinear elliptic equations with discontinuous coefficients in a general nonpolygonal domain \(\Omega\) with nonhomogeneous mixed Dirichlet-Neumann boundary conditions. In the discretization of the problem we proceed in the usual way: the domain \(\Omega\) is approximated by a polygonal one, conforming piecewise linear triangular elements are used and the integrals are evaluated by numerical quadratures. We prove the solvability of the discrete problem and study the convergence of the method both in strongly monotone and pseudomonotone cases under the only assumption that the exact solution \(u\in H^ 1(\Omega)\). Provided u is piecewise of class \(H^ 2\) and the problem is strongly monotone, we get the error estimate O(h).”
This paper draws heavily from three previous publications of the first author [Numer. Math. 50, 655-684 (1987; Zbl 0646.76085)] and of the first author and A. Zeníšek [ibid. 50, 451-475 (1987; Zbl 0637.65107) and ibid. 52, 147-163 (1987; Zbl 0642.65075)]. The authors consider that the problem coefficients are piecewise smooth and that the finite element triangulation respects the pieces in the sense that no subdomain boundary of the continuous problem crosses a triangle’s side. The proofs rest on estimates of behavior near internal and external boundaries which appeared in the earlier papers, with estimates over \(\Omega\) being sums over the subdomains. The authors carefully distinguish discretization errors from integration errors.
Reviewer: Myron Sussman

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations

References:

[1] L. BOCCARDO, G. BUTTAZZO, Quasilinear elliptic equations with discontinuons coefficients. Universita Degli Studi Di Piza, Dipartimento Di Matematica, Luglio 1987, Numero 206. Zbl0679.35035 MR999834 · Zbl 0679.35035
[2] P. G. CIARLET, The Finite Element Method for Elliptic Problems. Amsterdam : North-Holland 1978. Zbl0383.65058 MR520174 · Zbl 0383.65058
[3] P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Arch. Rational Mech. Anal. 46, 177-199 (1972). Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[4] P. G. CIARLET, P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element method. In :The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed. ), pp 409-474. New York : Academie Press 1972. Zbl0262.65070 MR421108 · Zbl 0262.65070
[5] [5] M. FEISTAUER, On irrotational flows through cascades of profiles in a layer of variable thickness. Apl. Mat. 29, 423-458 (1984). Zbl0598.76061 MR767495 · Zbl 0598.76061
[6] [6] M. FEISTAUER, Mathematical and numerical study of nonlinear problems in fluid mechanics. In : Proc. Conf. Equadiff 6, Brno 1985. (J. Vosmanský, M. Zlámal, eds. ), pp. 3-16, Berlin-Heidelberg : Springer 1986. Zbl0633.76025 MR877102 · Zbl 0633.76025
[7] [7] M. FEISTAUER, On the finite element approximation of a cascade flow problem. Numer. Mat.h 50, 655-684 (1987). Zbl0646.76085 MR884294 · Zbl 0646.76085 · doi:10.1007/BF01398378
[8] [8] M. FEISTAUER, A. ŽEN\?ŠEK, Finite element solution of nonlinear elliptic problems. Numer. Math. 50, 451-475 (1987). Zbl0637.65107 MR875168 · Zbl 0637.65107 · doi:10.1007/BF01396664
[9] [9] M. FEISTAUER, A. ŽEN\?ŠEK, Compactness method in the finite element theory of nonlinear elliptic problems. Numer. Math. 52, 147-163 (1988). Zbl0642.65075 MR923708 · Zbl 0642.65075 · doi:10.1007/BF01398687
[10] R. GLOWINSKI, A. MARROCCO, Analyse numérique du champ magnétique d’un alternateur par éléments finis et surrelaxation ponctuelle non lineaire. Comput. Methods Appl. Mech. Eng. 3, 55-85 (1974). Zbl0288.65068 MR413547 · Zbl 0288.65068 · doi:10.1016/0045-7825(74)90042-5
[11] R. GLOWINSKI, A. MARROCCO, Numerical solution of two-dimensional magnetostatic problems by augmented Lagrangian methods. Comput. Methods Appl. Mech. Eng. 12, 33-46 (1977). Zbl0364.65104 · Zbl 0364.65104 · doi:10.1016/0045-7825(77)90049-4
[12] V. HRUSKOVA-SOBOTIKOVA, Numerical solution of nonlinear elliptic problems by the methods of the finite elements least squares and conjugate gradients. Thesis. Faculty of Mathematics and Physics, Charles University, Prague, 1987 (in Czech ).
[13] V. P. IL’IN, Singularities of weak solutions to elliptic boundary values problems with discontinuous coefficients at higher derivatives. Zapiski Naucnych Seminarov LOMI AN SSSR, T. 38, Leningrad 1973 (in Russian).
[14] V. KREISINGER, J. ADAM, Magnetic fields in nonlinear anisotropic ferromagnetics. Acta Technica CSAV, 209-241 (1984). Zbl0535.73084 MR278544 · Zbl 0535.73084
[15] A. KUFNER, O. JOHN, S. FUCIK, Function Spaces. Prague : Academia 1977. MR482102
[16] J. L. LIONS, Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires. Paris, Dunod 1969. Zbl0189.40603 MR259693 · Zbl 0189.40603
[17] A. MARROCCO, Analyse numérique de problèmes d’éléctrotechnique. Ann. Sc.Math. Québec, vol. 1, 271-296 (1977). Zbl0434.65093 MR483548 · Zbl 0434.65093
[18] J. NEČAS, Les Méthodes Directes en Théorie des Équations Elliptiques Prague, Academia 1967. Zbl1225.35003 MR227584 · Zbl 1225.35003
[19] J. NEČAS, Introduction to the Theory of Nonlinear Elliptic Equations. Leipzig, Teubner Texte zur Mathematik, Band 52, 1983. Zbl0526.35003 MR731261 · Zbl 0526.35003
[20] L. A. OGANESJAN, L. A. DMITRENKO, Solution of elliptic equations with discontinuous coefficients on a regular mesh. ZVMMF, 14, No 4 (1974) (in Russian). Zbl0306.35041 MR388806 · Zbl 0306.35041 · doi:10.1016/0041-5553(74)90074-3
[21] V. J. RIVKIND, On the convergence estimates of homogeneous difference schemes for elliptic and parabolic equations with discontinuous coefficients. In : Proc < Problems of Mathematical Analysis >, I, Leningrad Published by Leningrad State University, 1966 (in Russian). Zbl0199.50504 MR221767 · Zbl 0199.50504
[22] M. P. SAPAGOVAS, Finite-difference method for quasilinear elliptic equations with discontinuons coefficients. ZVMMF, 5, No 4 (1965) (in Russian). Zbl0164.18102 · Zbl 0164.18102 · doi:10.1016/0041-5553(65)90120-5
[23] G. STAMPACCHIA, Équations elliptiques du second ordre a coefficients discontinus. Séminaire de Mathématiques Supérieures n^\circ 16, Montréal : Les Presses de l’Université de Montréal, 1966. Zbl0151.15501 MR251373 · Zbl 0151.15501
[24] G. STRANG, Variational crimes in the fïnite element method. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. (A. K. Aziz, ed. ), pp. 689-710. New York, Academic Press 1972. Zbl0264.65068 MR413554 · Zbl 0264.65068
[25] [25] A. ŽEN\?ŠEK, Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat. 26, 121-141 (1981). Zbl0475.65073 MR612669 · Zbl 0475.65073
[26] [26] A. ŽEN\?ŠEK, Discrete forms of Friedrichs’ inequalities in the finite element method. RAIRO Numer. Anal. 15, 265-286 (1981). Zbl0475.65072 MR631681 · Zbl 0475.65072
[27] A. ŽEN\?ŠEK, The finite element method for nonlinear elliptic equations with discontinuous coefficients. Preprint, Brno, 1988. Zbl0709.65081 · Zbl 0709.65081 · doi:10.1007/BF01385610
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.