×

Topological complexities of finite digital images. (English) Zbl 1499.68357

Summary: Digital topological methods are often used in computing the topological complexity of digital images. We give new results on the relation between reducibility and digital contractibility in order to determine the topological complexity of a digitally connected finite digital image. We present all possible cases of the topological complexity TC of a finite digital image in \(\mathbb{Z}\) and \(\mathbb{Z}^2\). Finally, we determine the higher topological complexity TC\(_n\) of finite irreducible digital images independently of the number of points for \(n > 1\).

MSC:

68U03 Computational aspects of digital topology
68U10 Computing methodologies for image processing

References:

[1] C. Berge. Graphs and Hypergraphs, 2nd edition, Amsterdam, Netherlands, 1973. · Zbl 0254.05101
[2] A. Borat. T, Vergili, Digital Lusternik-Schnirelmann category, Turk. J. Math. 42 (2018), 1845-1852. · Zbl 1424.55001
[3] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis. 10 (1999), 51-62. · Zbl 0946.68151
[4] L. Boxer, Digitally continuous functions, Pattern Recognit. Lett. 15 (1994), 833-839. · Zbl 0822.68119
[5] L. Boxer, Digital products, wedges, and covering spaces, J. Math. Imaging Vis. 25 (2006), 169-171. · Zbl 1478.94013
[6] L. Boxer, Fixed point sets in digital topology 2, Appl. Gen. Topol. 21 (1) (2020), 111-133. · Zbl 1444.54022
[7] L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vis. 24 (2006), 167-175. · Zbl 1478.94012
[8] L. Boxer, Properties of digital homotopy, J. Math. Imaging Vis. 22 (2005), 19-26. · Zbl 1383.68090
[9] L. Boxer, I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci. 11 (4) (2012) 161-180. · Zbl 1294.57001
[10] L. Boxer, P. C. Staecker, Fixed point sets in digital topology 1, Appl. Gen. Topol. 21 (1) (2020), 87-110. · Zbl 1444.54024
[11] L. Chen, Discrete Surfaces and Manifolds: A Theory of Digital-Discrete Geometry and Topology, Scientific & Practical Computing, 2004.
[12] L. Chen, Y. Rong, Digital topological method for computing genus and the Betti numbers, Topol. Appl. 157 (12) (2010), 1931-1936. · Zbl 1214.68425
[13] O. Ege, I. Karaca, Cohomology theory for digital images, Rom. J. Inf. Sci. Tech. 16 (1) (2013), 10-28. · Zbl 1372.55003
[14] O. Ege, I. Karaca, M. E. Ege, Relative homology groups in digital images, Appl. Math. Inf. Sci. 8 (5) (2014), 2337-2345. · Zbl 1318.55006
[15] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211-221. · Zbl 1038.68130
[16] M. Farber, Invitation to Topological Robotics, European Mathematical Society, 2008. · Zbl 1148.55011
[17] J. Haarman, M. P. Murphy, C. S. Peters, P. C. Staecker, Homotopy equivalence in finite digital images, J. Math. Imaging Vis. 53 (2015), 288-302. · Zbl 1343.68270
[18] G. T. Herman, Oriented surfaces in digital spaces, CVGIP-Graph Model Im. 55 (1993), 381-396.
[19] M. Is, I. Karaca, The higher topological complexity in digital images, Appl. Gen. Topol. 21 (2020), 305-325. 68M. ˙Is and ˙I. Karaca / J. Linear. Topological. Algebra.11(01) (2022)55-68. · Zbl 1453.55001
[20] I. Karaca, M. Is, Digital topological complexity numbers, Turk. J. Math. 42 (6) 2018, 3173-3181. · Zbl 1438.68268
[21] E. Khalimsky, Motion, Deformation, and Homotopy in Finite Spaces, Proceedings IEEE International Conference on Systems, Man and Cybernetics, 1987. · Zbl 0655.68021
[22] T. Y. Kong, A digital fundamental group, Comput. Graph. 13 (1989), 159-166.
[23] D. G. Morgenthaler, A. Rosenfeld, Surfaces in three-dimensional images, Inf. Control. 51 (1981), 227-247. · Zbl 0502.68017
[24] A. Rosenfeld, Connectivity in digital pictures, J. ACM. 17 (1970), 146-160. · Zbl 0208.19806
[25] A. Rosenfeld, Digital topology, Am. Math. Mon. 86 (1979), 76-87. · Zbl 0404.68071
[26] Y. Rudyak, On higher analogs of topological complexity, Topol. Appl. 157 (5) (2010), 916-920. · Zbl 1187.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.