×

On trace formulae of the generalised heat potential operator. (English) Zbl 1390.35171

Summary: This paper deals with a generalised heat potential for the degenerate (heat) diffusion equation, which satisfies the initial condition with respect to the time variable. An interesting question having several important applications (in general) is what boundary condition can be put on the generalised heat potential on the lateral boundary of the rectangle so that the degenerate diffusion equation complemented by this boundary condition would have a unique solution in the domain still given by the same formula of the generalised heat potential (with the same kernel). This amounts to finding the trace of the generalised heat potential to the lateral boundary of the rectangle. That is in this work a boundary condition for this potential is found. Obtained boundary conditions in the spatial variable will be nonlocal boundary conditions.

MSC:

35K65 Degenerate parabolic equations
35K70 Ultraparabolic equations, pseudoparabolic equations, etc.
Full Text: DOI

References:

[1] Bezmenov, I.V.: Transfer conditions of Sommerfeld’s radiation conditions to an artificial boundary domain based on the variational principle. Math. Sb. 185(3), 2-24 (1994) · Zbl 0831.35034
[2] Ditkowski, A., Suhov, A.: Near-field infinity-simulating boundary conditions for the heat equation. Proc. Natl. Acad. Sci. USA 105, 87-93 (2008) · Zbl 1205.35140 · doi:10.1073/pnas.0802671105
[3] Fischer, V., Ruzhansky, M.: A pseudo-differential calculus on the Heisenberg group. C. R. Acad. Sci. Paris Ser. I 352, 197-204 (2014) · Zbl 1287.22002 · doi:10.1016/j.crma.2013.12.006
[4] Fischer, V., Ruzhansky, M.: A pseudo-differential calculus on graded nilpotent Lie groups. In: Fourier Analysis, Trends in Mathematics, pp. 107-132. Birkhäuser (2014) · Zbl 1319.35316
[5] Fischer, V., Ruzhansky, M.: Quantization on nilpotent Lie groups. In: Progress in Mathematics, vol. 314. Birkhäuser (2016) · Zbl 1347.22001
[6] Givoli, D.: Numerical Methods for Problems in Infinite Domains. Elsevier, Amsterdam (1992) · Zbl 0788.76001
[7] Kac, M.: On some connections between probability theory and differential and integral equations. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 189-215. University of California Press, Berkeley and Los Angeles (1951) · Zbl 0767.35042
[8] Kac, M.: Integration in function spaces and some of its applications. Accademia Nazionale dei Lincei, Pisa (1980) (Lezioni Fermiane [Fermi Lectures]) · Zbl 0504.28015
[9] Kal’menov, S.T., Otelbaev, M.: Boundary criterion for integral operators. Dokl. Math. 93(1), 58-61 (2016) · Zbl 1347.47031 · doi:10.1134/S1064562416010208
[10] Kal’menov, S.T., Suragan, D.: On spectral problems for the volume potential. Dokl. Math. 80(2), 646-649 (2009) · Zbl 1184.31003 · doi:10.1134/S1064562409050032
[11] Kalmenov, T.S., Suragan, D.: A boundary condition and spectral problems for the Newton potential. In: Modern Aspects of the Theory of Partial Differential Equations, Operator Theory: Advances and Applications, vol. 216, pp. 187-210. Birkhäuser/Springer Basel AG, Basel (2011)
[12] Kal’menov, T.S., Suragan, D.: Transfer conditions of Sommerfeld’s radiation on the boundary of a bounded domain. Jour. Vych. Math. i Mathem. Phys. 48(4), 1063-1068 (2012) (in Russian) · Zbl 1274.35064
[13] Kal’menov, S.T., Suragan, D.: Boundary conditions for the volume potential for the polyharmonic equation. Differ. Equ. 48(4), 604-608 (2012) · Zbl 1247.31004 · doi:10.1134/S0012266112040155
[14] Kal’menov, S.T., Suragan, D.: Initial-boundary value problems for the wave equation. EJDE 2014, 1-7 (2014) · Zbl 1288.35330
[15] Kal’menov, S.T., Suragan, D.: On permeable potential boundary conditions for the Laplace-Beltrami operator. Siber. Math. J. 56(6), 1060-1064 (2015) · Zbl 1338.35125 · doi:10.1134/S0037446615060099
[16] Kal’menov, S.T., Tokmagambetov, N.E.: On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain. Siber. Math. J. 54(6), 1287-1293 (2013) · Zbl 1284.35211
[17] Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduete studies in Mathematics, vol. 12. AMS, Providence, RI (1996) · Zbl 0865.35001
[18] Malyshev, I.: On the inverse problem for a heat-like equation. J. Appl. Math. Simul. 1(2), 81-97 (1987) · Zbl 0657.35131 · doi:10.1155/S1048953388000073
[19] Malyshev, I.: On the parabolic potentials in degenerate-type heat equations. J. Appl. Math. Stoch. Anal. 2(4), 147-160 (1991) · Zbl 0767.35042 · doi:10.1155/S1048953391000114
[20] Ruzhansky, M., Suragan, D.: Isoperimetric inequalities for the logarithmic potential operator. J. Math. Anal. Appl. 434(2), 1676-1689 (2016) · Zbl 1330.47063 · doi:10.1016/j.jmaa.2015.07.041
[21] Rozenblum, G., Ruzhansky, M., Suragan, D.: Isoperimetric inequalities for Schatten norms of Riesz potentials. J. Funct. Anal. 271, 224-239 (2016) · Zbl 1381.35111 · doi:10.1016/j.jfa.2016.04.023
[22] Ruzhansky, M., Suragan, D.: On Kac’s principle of not feeling the boundary for the Kohn Laplacian on the Heisenberg group. Proc. Am. Math. Soc. 144(2), 709-721 (2016) · Zbl 1336.35346 · doi:10.1090/proc/12792
[23] Ruzhansky, M., Suragan, D.: Layer potentials, Kac’s problem, and refined Hardy inequality on homogeneous Carnot groups. Adv. Math. (2016). doi:10.1016/j.aim.2016.12.013 · Zbl 1357.35271
[24] Saito, N.: Data analysis and representation on a general domain using eigenfunctions of Laplacian. Appl. Comput. Harmon. Anal. 25(1), 68-97 (2008) · Zbl 1148.94005 · doi:10.1016/j.acha.2007.09.005
[25] Suragan, D., Tokmagambetov, N.: On transparent boundary conditions for the high-order heat equation. Siber. Electron. Math. Rep. 10(1), 141-149 (2013) · Zbl 1330.35197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.