×

Frequency analysis of binary oscillators triggered by a random noise. (English) Zbl 1046.94507

Summary: The frequency analysis of a bistable binary oscillator triggered by a stationary random signal is performed by analyzing the expression for the power spectrum of its output. The oscillator state changes when the input noise exceeds a fixed threshold \(\theta\), which occurs in correspondence of the events produced by an ordinary renewal process. After each state change, a fixed refractory time \(T\) is to be passed before the output performs a new transition. A theoretical study shows that a coherence resonance effect appears in the output square wave if the threshold \(\theta\) is lower than a positive real value \(\underline{\theta}\). When the overcoming of the input threshold occurs according to a Poisson process with exponential parameter \(\alpha\), the regularity is present at the output only if the product \(\alpha T\) exceeds \(\sqrt 2 - 1\). The value of the characteristic frequency increases rapidly with \(\alpha T\) towards its asymptotic value 1/(\(2T\)). The same probabilistic approach is then adopted to perform the spectral analysis of a set of uncoupled binary oscillators, sharing the same refractory time \(T\) and the same input random signal. Under mild assumptions the whole system behaves as a single oscillator, whose output is amplified proportionally to the number of elements involved.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
60G35 Signal detection and filtering (aspects of stochastic processes)
70J25 Stability for problems in linear vibration theory
Full Text: DOI

References:

[1] McNamara, B.; Wiesenfeld, K.; Roy, R., Theory of stochastic resonance, Phys. Rev. A, 39, 4854 (1989)
[2] Melnikov, V. I., Schmitt trigger: a solvable model of stochastic resonance, Phys. Rev. E, 48, 2481-2489 (1993)
[3] Gammaitoni, L., Stochastic resonance and the dithering effect in threshold physical systems, Phys. Rev. E, 52, 4691-4698 (1997)
[4] Lindner, B.; Schimansky-Geier, L., Coherence and stochastic resonance in a two-state system, Phys. Rev. E, 61, 6103-6110 (2000)
[5] Gang, H.; Ditzinger, T.; Ning, C. Z.; Haken, H., Stochastic resonance without external periodic force, Phys. Rev. Lett., 71, 807-810 (1993)
[6] Pikovsky, A. S.; Kurths, J., Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78, 775-778 (1997) · Zbl 0961.70506
[7] Longtin, A., Autonomous stochastic resonance in bursting neurons, Phys. Rev. E, 55, 868-876 (1997)
[8] Neiman, A.; Saparin, P. I.; Stone, L., Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems, Phys. Rev. E, 56, 270-273 (1997)
[9] Postnov, D. E.; Han, S. K.; Yim, T. G.; Sosnovtseva, O. V., Experimental observation of coherence resonance in cascaded excitable systems, Phys. Rev. E, 59, R3791-R3794 (1999)
[10] Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A., Stochastic resonance in climatic change, Tellus, 34, 10 (1982)
[11] Nicolis, C., Stochastic aspects of climatic transitions-response to a periodic forcing, Tellus, 34, 1 (1982)
[12] Fauve, S.; Heslot, F., Stochastic resonance in a bistable system, Phys. Lett. A, 97, 5 (1983)
[13] McNamara, B.; Wiesenfeld, K.; Roy, R., Observation of stochastic resonance in a ring laser, Phys. Rev. Lett., 60, 2626 (1988)
[14] Bulsara, A.; Jacobs, E.; Zhou, T.; Moss, F.; Kiss, L., Stochastic resonance in a single neuron model: theory and analog simulation, J. Theoret. Biol., 152, 531 (1991)
[15] Bartussek, R.; Hänggi, P.; Jung, P., Stochastic resonance in optical bistable systems, Phys. Rev. E, 49, 3930 (1994)
[16] I, L.; Liu, J. M., Experimental-observation of stochastic resonance-like behavior of autonomous motion in weakly ionized rf magnetoplasmas, Phys. Rev. Lett., 74, 3161-3164 (1995)
[17] Wiesenfeld, K.; Moss, F., Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs, Nature, 373, 33 (1995)
[18] Neda, Z., Stochastic resonance in 3D Ising ferromagnets, Phys. Lett. A, 210, 125-128 (1996)
[19] Giacomelli, G.; Giudici, M.; Balle, S.; Tredicce, J. R., Experimental evidence of coherence resonance in an optical system, Phys. Rev. Lett., 84, 3298-3301 (2000)
[20] Wilkowski, D.; Ringot, J.; Hennequin, D.; Garreau, J. C., Instabilities in a magneto-optical trap: noise-induced dynamics in an atomic system, Phys. Rev. Lett., 85, 1839-1842 (2000)
[21] Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F., Stochastic resonance, Rev. Modern Phys., 70, 223-287 (1998)
[22] Jung, P., Threshold devices: fractal noise and neural talk, Phys. Rev. E, 50, 2513-2522 (1994)
[23] Lindner, B.; Schimansky-Geier, L., Analytical approach to the stochastic Fitzhugh-Nagumo system and coherence resonance, Phys. Rev. E, 60, 7270-7276 (1999)
[24] Pakdaman, K.; Tanabe, S.; Shimokawa, T., Coherence resonance and discharge time reliability in neurons and neuronal models, Neural Networks, 14, 895-905 (2001)
[25] B. Lindner, L. Schimansky-Geier, A. Longtin, Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model, Phys. Rev. E 66 (2002) 031916-1-6.; B. Lindner, L. Schimansky-Geier, A. Longtin, Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model, Phys. Rev. E 66 (2002) 031916-1-6.
[26] McCulloch, W. S.; Pitts, W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5, 115-133 (1943) · Zbl 0063.03860
[27] D.R. Cox, V. Isham, Point Processes, Chapman & Hall, London, 1980.; D.R. Cox, V. Isham, Point Processes, Chapman & Hall, London, 1980. · Zbl 0441.60053
[28] D.R. Cox, H.D. Miller, The Theory of Stochastic Processes, Chapman & Hall, London, 1965.; D.R. Cox, H.D. Miller, The Theory of Stochastic Processes, Chapman & Hall, London, 1965. · Zbl 0149.12902
[29] R.L. Stratonovich, Topics in the Theory of Random Noise, vol. 1, Gordon and Breach, New York, 1963.; R.L. Stratonovich, Topics in the Theory of Random Noise, vol. 1, Gordon and Breach, New York, 1963. · Zbl 0119.14502
[30] Neuts, M. F.; Sitaraman, H., The square-wave spectral density of a stationary renewal process, J. Appl. Math. Simulat., 2, 117-130 (1989) · Zbl 0686.60040
[31] M.F. Neuts, The square wave spectrum of a Markov renewal process, in: Stochastic Processes and Their Applications, vol. 370, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1991, pp. 1-10.; M.F. Neuts, The square wave spectrum of a Markov renewal process, in: Stochastic Processes and Their Applications, vol. 370, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1991, pp. 1-10. · Zbl 0764.60090
[32] Neiman, A.; Schimansky-Geier, L.; Moss, F., Linear response theory applied to stochastic resonance in models of ensembles of oscillators, Phys. Rev. E, 56, R9-R12 (1997)
[33] W. Feller, An Introduction to Probability Theory and its Applications, vol. 1, 3rd ed., Wiley, New York, 1968.; W. Feller, An Introduction to Probability Theory and its Applications, vol. 1, 3rd ed., Wiley, New York, 1968. · Zbl 0155.23101
[34] A.V. Oppenheim, R.W. Schafer, Digital Signal Processing, Prentice-Hall, New Jersey, 1975.; A.V. Oppenheim, R.W. Schafer, Digital Signal Processing, Prentice-Hall, New Jersey, 1975. · Zbl 0369.94002
[35] M. Muselli, Spectral analysis of bistable binary oscillators triggered by a random noise, Technical Report ICE 1/00, Istituto per i Circuiti Elettronici, Consiglio Nazionale delle Ricerche, 2000.; M. Muselli, Spectral analysis of bistable binary oscillators triggered by a random noise, Technical Report ICE 1/00, Istituto per i Circuiti Elettronici, Consiglio Nazionale delle Ricerche, 2000. · Zbl 1046.94507
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.