×

Convergence theorems for generalized hemicontractive mapping in p-uniformly convex metric space. (English) Zbl 1476.54121

Summary: In this paper, we introduce and study an Ishikawa-type iteration process for the class of generalized hemicontractive mappings in \(p\)-uniformly convex metric spaces, and prove both \(\Delta\)-convergence and strong convergence theorems for approximating a fixed point of generalized hemicontractive mapping in complete \(p\)-uniformly convex metric spaces. We give a surprising example of this class of mapping that is not a hemicontractive mapping. Our results complement, extend and generalize numerous other recent results in CAT(0) spaces.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
Full Text: DOI

References:

[1] K. O. Aremu, C. Izuchukwu, G. C. Ugwunnadi and O. T. Mewomo, On the proximal point algorithm and demimetric mappings in \rm CAT(0) spaces, Demonstr. Math. 51 (2018), no. 1, 277-294. · Zbl 1479.47063
[2] D. Ariza-Ruiz, G. López-Acedo and A. Nicolae, The asymptotic behavior of the composition of firmly nonexpansive mappings, J. Optim. Theory Appl. 167 (2015), no. 2, 409-429. · Zbl 1329.47052
[3] K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), no. 3, 463-482. · Zbl 0803.47037
[4] M. Bethke, Approximation von Fixpunkten streng pseudokontraktiver Operatoren, Wiss. Z. Pädagog. Hochsch. “Liselotte Herrmann” Güstrow Math.-Natur. Fak. 27 (1989), no. 2, 263-270. · Zbl 0717.47023
[5] M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss. 319, Springer, Berlin, 1999. · Zbl 0988.53001
[6] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882. · Zbl 0176.45302
[7] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. · Zbl 0153.45701
[8] W. L. Bynum, Weak parallelogram laws for Banach spaces, Canad. Math. Bull. 19 (1976), no. 3, 269-275. · Zbl 0347.46015
[9] C. E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 99 (1987), no. 2, 283-288. · Zbl 0646.47037
[10] C. E. Chidume and M. O. Osilike, Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces, Numer. Funct. Anal. Optim. 15 (1994), no. 7-8, 779-790. · Zbl 0810.47057
[11] B. J. Choi and U. C. Ji, The proximal point algorithm in uniformly convex metric spaces, Commun. Korean Math. Soc. 31 (2016), no. 4, 845-855. · Zbl 1376.49043
[12] S. Dhompongsa, W. A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006), no. 4, 762-772. · Zbl 1105.47050
[13] S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in {\rm CAT}(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572-2579. · Zbl 1165.65351
[14] R. Espínola, A. Fernández-León and B. Pia̧tek, Fixed points of single- and set-valued mappings in uniformly convex metric spaces with no metric convexity, Fixed Point Theory Appl. 2010 (2010), Article ID 169837. · Zbl 1188.54015
[15] Q. Fan and X. Wang, An explicit iterative algorithm for 𝑘-strictly pseudo-contractive mappings in Banach spaces, J. Nonlinear Sci. Appl. 9 (2016), no. 7, 5021-5028. · Zbl 1381.47048
[16] L. Gajek, J. Jachymski and D. Zagrodny, Fixed point and approximate fixed point theorems for non-affine maps, J. Appl. Anal. 1 (1995), no. 2, 205-211. · Zbl 1295.47057
[17] J.-C. Huang and T. Hu, Strong convergence theorems of an implicit iteration process for generalized hemi-contractive mappings, Tamsui Oxf. J. Math. Sci. 23 (2007), no. 3, 365-376. · Zbl 1143.47046
[18] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. · Zbl 0286.47036
[19] C. Izuchukwu, K. O. Aremu, A. A. Mebawondu and O. T. Mewomo, A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol. 20 (2019), no. 1, 193-210. · Zbl 1475.47058
[20] S. H. Khan and M. Abbas, Strong and Δ-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61 (2011), no. 1, 109-116. · Zbl 1207.65069
[21] K. S. Kim, Some convergence theorems for contractive type mappings in CAT(0) spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 381715. · Zbl 1297.54089
[22] W. A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis (Malaga/Seville 2002/2003), Colecc. Abierta 64, Universidad de Sevilla, Seville (2003), 195-225. · Zbl 1058.53061
[23] W. A. Kirk, Geodesic geometry and fixed point theory. II, International Conference on Fixed Point Theory and Applications, Yokohama Publishers, Yokohama (2004), 113-142. · Zbl 1083.53061
[24] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), no. 12, 3689-3696. · Zbl 1145.54041
[25] K. Kuwae, Jensen’s inequality on convex spaces, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 1359-1378. · Zbl 1291.53047
[26] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182. · Zbl 0346.47046
[27] A. Naor and L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compos. Math. 147 (2011), no. 5, 1546-1572. · Zbl 1267.20057
[28] S.-I. Ohta, Regularity of harmonic functions in Cheeger-type Sobolev spaces, Ann. Global Anal. Geom. 26 (2004), no. 4, 397-410. · Zbl 1081.58010
[29] S.-I. Ohta, Convexities of metric spaces, Geom. Dedicata 125 (2007), 225-250. · Zbl 1140.52001
[30] S.-I. Ohta, Markov type of Alexandrov spaces of non-negative curvature, Mathematika 55 (2009), no. 1-2, 177-189. · Zbl 1195.46019
[31] S.-I. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2009), no. 3, 669-699. · Zbl 1160.53033
[32] Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001. · Zbl 0974.53002
[33] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math. 38 (2019), no. 2, Paper No. 77. · Zbl 1438.47122
[34] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ric. Mat. 69 (2020), no. 1, 235-259. · Zbl 1439.47056
[35] A. Taiwo, L. O. Jolaoso and O. T. Mewomo, Parallel hybrid algorithm for solving Pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1893-1918. · Zbl 1480.47100
[36] W. Takahashi, A convexity in metric space and nonexpansive mappings. I, Kodai Math. Sem. Rep. 22 (1970), 142-149. · Zbl 0268.54048
[37] G. C. Ugwunnadi, C. Izuchukwu and O. T. Mewomo, Strong convergence theorem for monotone inclusion problem in {\rm CAT}(0) spaces, Afr. Mat. 30 (2019), no. 1-2, 151-169. · Zbl 1438.47123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.