×

A search for good pseudo-random number generators: survey and empirical studies. (English) Zbl 1505.65005


MSC:

65C10 Random number generation in numerical analysis

References:

[1] Galton, F., Dice for statistical experiments, Nature, 42, 1070, 13-14 (1890) · JFM 22.0235.01
[2] Tippett, L., (Random Sampling Numbers. Random Sampling Numbers, Tracts for Computers (1927), Cambridge University Press)
[3] Kendall, M. G.; Babington-Smith, B., Randomness and random sampling numbers, J. R. Stat. Soc., 101, 1, 147-166 (1938)
[4] Kendall, M. G.; Babington-Smith, B., Second paper on random sampling numbers, Suppl. J. R. Stat. Soc., 6, 1, 51-61 (1939) · Zbl 0024.42902
[5] Von Neumann, J., 13. Various techniques used in connection with random digits, Appl. Math. Comput., 12, 36-38 (1951)
[6] L’Ecuyer, P., Maximally equidistributed combined Tausworthe generators, Math. Comp., 65, 213, 203-213 (1996) · Zbl 0853.65007
[7] Lewis, T. G.; Payne, W. H., Generalized feedback shift register pseudorandom number algorithm, J. ACM, 20, 3, 456-468 (1973) · Zbl 0266.65009
[8] Matsumoto, M.; Nishimura, T., Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul., 8, 1, 3-30 (1998) · Zbl 0917.65005
[9] Panneton, F.; L’Ecuyer, P., On the xorshift random number generators, ACM Trans. Model. Comput. Simul., 15, 4, 346-361 (2005) · Zbl 1390.65015
[10] Panneton, F.; L’Ecuyer, P.; Matsumoto, M., Improved long-period generators based on linear recurrences modulo 2, ACM Trans. Math. Software, 32, 1, 1-16 (2006) · Zbl 1346.94089
[11] Saito, M.; Matsumoto, M., SIMD-oriented fast mersenne twister: a 128-bit pseudorandom number generator, (7th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (2008), Springer Berlin Heidelberg), 607-622 · Zbl 1141.65319
[12] Saito, M.; Matsumoto, M., A PRNG specialized in double precision floating point numbers using an affine transition, (8th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (2009), Springer Berlin Heidelberg), 589-602 · Zbl 1184.65013
[13] Tausworthe, R. C., Random numbers generated by linear recurrence modulo two, Math. Comp., 19, 90, 201-209 (1965) · Zbl 0137.34804
[14] Tezuka, S., On the discrepancy of GFSR pseudorandom numbers, J. ACM, 34, 4, 939-949 (1987) · Zbl 0633.65005
[15] Wolfram, S., Random sequence generation by cellular automata, Adv. Appl. Math., 7, 2, 123-169 (1986) · Zbl 0603.68053
[16] Tomassini, M.; Sipper, M.; Zolla, M.; Perrenoud, M., Generating high-quality random numbers in parallel by cellular automata, Future Gener. Comput. Syst., 16, 2-3, 291-305 (1999)
[17] Vigna, S., An experimental exploration of marsaglia’s xorshift generators, scrambled, ACM Trans. Math. Software, 42, 4, 30:1-30:23 (2016) · Zbl 1369.65009
[18] Wolfram, S., Origins of randomness in physical systems, Phys. Rev. Lett., 55, 449-452 (1985)
[19] Hortensius, P. D.; McLeod, R. D.; Pries, W.; Miller, D. M.; Card, H. C., Cellular automata-based pseudorandom number generators for built-in self-test, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 8, 8, 842-859 (1989)
[20] Hortensius, P. D.; McLeod, R. D.; Card, H. C., Parallel random number generation for VLSI systems using cellular automata, IEEE Trans. Comput., C-38, 10, 1466-1473 (1989)
[21] P.H. Bardell, Analysis of cellular automata used as pseudorandom pattern generators, in: Proceedings International Test Conference, 1990, pp. 762-768.
[22] Compagner, A.; Hoogland, A., Maximum-length sequences, cellular automata, and random numbers, J. Comput. Phys., 71, 2, 391-428 (1987) · Zbl 0616.65001
[23] Sipper, M.; Tomassini, M., Generating parallel random number generators by cellular programming, Internat. J. Modern Phys. C, 7, 2, 180-190 (1996)
[24] K. Cattell, M. Serra, The analysis of one dimensional multiple-valued linear cellular automata, in: Proceedings of the Twentieth International Symposium on Multiple-Valued Logic, 1990, pp. 402-409.
[25] Alonso-Sanz, R.; Bull, L., Elementary cellular automata with minimal memory and random number generation, Complex Syst., 18, 2, 195-213 (2009) · Zbl 1177.68149
[26] Das, S.; Sikdar, B. K., A scalable test structure for multicore chip, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 29, 1, 127-137 (2010)
[27] Das, S., Theory and Applications of Nonlinear Cellular Automata In VLSI Design (2007), Bengal Engineering and Science University: Bengal Engineering and Science University Shibpur, India, (Ph.D. thesis)
[28] Guan, S.; Zhang, S., An evolutionary approach to the design of controllable cellular automata structure for random number generation, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 7, 1, 23-36 (2003)
[29] Guan, S.; Tan, S. K., Pseudorandom number generation with self-programmable cellular automata, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 23, 7, 1095-1101 (2004)
[30] Tomassini, M.; Sipper, M.; Perrenoud, M., On the generation of high-quality random numbers by two-dimensional cellular automata, IEEE Trans. Comput., 49, 10, 1146-1151 (2000) · Zbl 1315.68187
[31] Guan, S.; Zhang, S.; Quieta, T., 2-D CA variation with asymetric neighborship for psedorandom number generation, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 23, 3, 378-388 (2004)
[32] Hosseini, S. M.; Karimi, H.; Jahan, M. V., Generating pseudo-random numbers by combining two systems with complex behaviors, J. Inf. Secur. Appl., 19, 2, 149-162 (2014)
[33] Marsaglia, G., DIEHARD: A battery of tests of randomness (1996), http://stat.fsu.edu/ geo/diehard.html
[34] L’Ecuyer, P.; Simard, R., TestU01: A C library for empirical testing of random number generators, ACM Trans. Math. Software, 33, 4, 22:1-22:40 (2007) · Zbl 1365.65008
[35] Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic ApplicationsTech. rep. (2001), DTIC Document
[36] L’Ecuyer, P., Random numbers for simulation, Commun. ACM, 33, 10, 85-97 (1990)
[37] Goldreich, O., Foundations of Cryptography, Volume 2 (2003), Cambridge University Press
[38] Lehmer, D. H., Mathematical methods in large-scale computing units, Ann. Comput. Lab. Harv. Univ., 26, 141-146 (1951) · Zbl 0045.40001
[39] Knuth, D. E., The Art of Computer Programming - Seminumerical Algorithms, Vol. 2 (2000), Pearson Education · Zbl 0191.18001
[40] R. McGrath, et al., GNU C Library, Free Software Foundation, Inc,.
[41] Lewis, P. A.W.; Goodman, A. S.; Miller, J. M., A pseudo-random number generator for the System/360, IBM Syst. J., 8, 2, 136-146 (1969)
[42] Fishman, G. S., Multiplicative congruential random number generators with modulus \(2^\beta \): an exhaustive analysis for \(\beta = 32\) and a partial analysis for \(\beta = 48\), Math. Comp., 54, 189, 331-344 (1990) · Zbl 0686.65004
[43] Fishman, G.; Moore, L. R., An exhaustive analysis of multiplicative congruential random number generators with modulus \(2^{31} - 1\), SIAM J. Sci. Stat. Comput., 7, 1, 24-45 (1986) · Zbl 0603.65003
[44] Park, S. K.; Miller, K. W., Random number generators: Good ones are hard to find, Commun. ACM, 31, 10, 1192-1201 (1988)
[45] Park, S. K.; Miller, K. W.; Stockmeyer, P. K., Technical correspondence: Response, Commun. ACM, 36, 7, 105-110 (1993)
[46] Brent, R. P., On the periods of generalized fibonacci recurrences, Math. Comp., 63, 207, 389-401 (1994) · Zbl 0809.11083
[47] Marsaglia, G.; Zaman, A., A new class of random number generators, Ann. Appl. Probab., 1, 3, 462-480 (1991) · Zbl 0733.65005
[48] Koç, C., Recurring-with-carry sequences, J. Appl. Probab., 32, 4, 966-971 (1995) · Zbl 0838.11007
[49] Couture, R.; L’Ecuyer, P., Distribution properties of multiply-with-carry random number generators, Math. Comput. Am. Math. Soc., 66, 218, 591-607 (1997) · Zbl 0866.65003
[50] Eichenauer, J.; Lehn, J., A non-linear congruential pseudo random number generator, Stat. Hefte, 27, 1, 315-326 (1986) · Zbl 0607.65001
[51] Eichenauer-Herrmann, J., Construction of inversive congruential pseudorandom number generators with maximal period length, J. Comput. Appl. Math., 40, 3, 345-349 (1992) · Zbl 0761.65001
[52] Eichenauer-Herrmann, J., Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp., 60, 201, 375-384 (1993) · Zbl 0795.65002
[53] L’Ecuyer, P., Efficient and portable combined random number generators, Commun. ACM, 31, 6, 742-751 (1988)
[54] Wichmann, B. A.; Hill, I. D., Algorithm AS 183: An efficient and portable pseudo-random number generator, J. R. Stat. Soc. C, 31, 2, 188-190 (1982)
[55] L’Ecuyer, P., Combined multiple recursive random number generators, Oper. Res., 44, 5, 816-822 (1996) · Zbl 0904.65004
[56] L’Ecuyer, P., Good parameters and implementations for combined multiple recursive random number generators, Oper. Res., 47, 1, 159-164 (1999) · Zbl 1042.65505
[57] Nance, R. E.; Overstreet, C., Some experimental observations on the behavior of composite random number generators, Oper. Res., 26, 5, 915-935 (1978) · Zbl 0389.65004
[58] Bratley, P.; Fox, B. L.; Schrage, L. E., A Guide to Simulation (1987), Springer Science & Business Media
[59] P. L’Ecuyer, R. Touzin, Fast combined multiple recursive generators with multipliers of the form \(a = \pm 2^q \pm 2^r\), in: Proceedings of the 32nd Conference on Winter Simulation, 2000, pp. 683-689.
[60] O’Neill, M. E., PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation (HMC-CS-2014-0905) (2014), Harvey Mudd College: Harvey Mudd College Claremont, CA
[61] Tootill, J. P.R.; Robinson, W. D.; Eagle, D. J., An asymptotically random tausworthe sequence, J. ACM, 20, 3, 469-481 (1973) · Zbl 0266.65008
[62] Tootill, J. P.R.; Robinson, W. D.; Adams, A. G., The runs up-and-down performance of tausworthe pseudo-random number generators, J. ACM, 18, 3, 381-399 (1971) · Zbl 0225.65012
[63] L’Ecuyer, P., Random Number Generators (2017), DIRO, Université de Montréal, http://www-labs.iro.umontreal.ca/ simul/rng/
[64] Matsumoto, M.; Kurita, Y., Twisted GFSR generators, ACM Trans. Model. Comput. Simul., 2, 3, 179-194 (1992) · Zbl 0849.94014
[65] Matsumoto, M.; Kurita, Y., Twisted GFSR generators II, ACM Trans. Model. Comput. Simul., 4, 3, 254-266 (1994) · Zbl 0849.94015
[66] Saito, M.; Matsumoto, M., SIMD-oriented fast mersenne twister (SFMT): twice faster than mersenne twister (2017), http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/SFMT/#dSFMT
[67] Marsaglia, G., Xorshift RNGs, J. Stat. Softw., 8, 14, 1-6 (2003)
[68] Brent, R. P., Note on Marsaglia’s xorshift random number generators, J. Stat. Softw., 11, 5, 1-5 (2004)
[69] Vigna, S., Further scramblings of Marsaglia’s xorshift generators, J. Comput. Appl. Math., 315, Supplement C, 175-181 (2017) · Zbl 1421.65003
[70] L’Ecuyer, P.; Granger-Piché, J., Combined generators with components from different families, Math. Comput. Simulation, 62, 3-6, 395-404 (2003) · Zbl 1019.65006
[71] Kari, J., Theory of cellular automata: A survey, Theoret. Comput. Sci., 334, 1-3, 3-33 (2005) · Zbl 1080.68070
[72] Bhattacharjee, K.; Naskar, N.; Roy, S.; Das, S., A survey of cellular automata: types, dynamics, non-uniformity and applications, Nat. Comput., 19, 2, 433-461 (2020) · Zbl 1530.68158
[73] Wolfram, S., Statistical mechanics of cellular automata, Rev. Modern Phys., 55, 3, 601-644 (1983) · Zbl 1174.82319
[74] Matsumoto, M., Simple cellular automata as pseudorandom m-sequence generators for built-in self-test, ACM Trans. Model. Comput. Simul., 8, 1, 31-42 (1998) · Zbl 0918.65004
[75] Pal Chaudhuri, P.; Roy Chowdhury, D.; Nandi, S.; Chattopadhyay, S., Additive Cellular Automata - Theory and Applications, Vol. 1 (1997), IEEE Computer Society Press: IEEE Computer Society Press USA · Zbl 0944.68133
[76] Card, H.; Hortensius, P.; McLeod, R., Parallel random number generation for VLSI systems using cellular automata, IEEE Trans. Comput., 38, 10, 1466-1473 (1989)
[77] Saraniti, M.; Goodnick, S. M., Hybrid fullband cellular automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors, IEEE Trans. Electron Devices, 47, 10, 1909-1916 (2000)
[78] J.M. Comer, J.C. Cerda, C.D. Martinez, D.H. Hoe, Random number generators using cellular automata implemented on FPGAs, in: Proceedings of Southeastern Symposium on System Theory, 2012, pp. 67-72.
[79] J.M. Comer, J.C. Cerda, C.D. Martinez, D.H.K. Hoe, Random number generators using Cellular Automata implemented on FPGAs, in: Proceedings of the 2012 44th Southeastern Symposium on System Theory (SSST), 2012, pp. 67-72.
[80] Wolfram, S., Cryptography with cellular automata, (Advances in Cryptology - Crypto’85, Vol. 218 (1986)), 429-432
[81] Machicao, J.; Marco, A. G.; Bruno, O. M., Chaotic encryption method based on life-like cellular automata, Expert Syst. Appl., 39, 16, 12626-12635 (2012)
[82] Eslami, Z.; Zarepour Ahmadabadi, J., A verifiable multi-secret sharing scheme based on cellular automata, Inform. Sci., 180, 15, 2889-2894 (2010) · Zbl 1193.94070
[83] Wolfram, S., A New Kind of Science (2002), Wolfram-Media · Zbl 1022.68084
[84] Pries, W.; Thanailakis, A.; Card, H. C., Group properties of cellular automata and VLSI applications, IEEE Trans. Comput., C-35, 12, 1013-1024 (1986) · Zbl 0615.68043
[85] Serra, M.; Slater, T.; Muzio, J. C.; Miller, D. M., The analysis of one-dimensional linear cellular automata and their aliasing properties, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 9, 7, 767-778 (1990)
[86] Cattell, K.; Muzio, J. C., Synthesis of one-dimensional linear hybrid cellular automata, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 15, 3, 325-335 (1996)
[87] Cattell, K.; Zhang, S., Minimal cost one-dimensional linear hybrid cellular automata of degree through 500, J. Electron. Test.: Theory Appl., 6, 2, 255-258 (1995)
[88] Bardell, P. H.; McAnney, W. H.; Savir, J., Built-in Test for VLSI: Pseudorandom Techniques (1987), Wiley-Interscience: Wiley-Interscience New York, NY, USA
[89] Bardell, P. H., Primitive polynomials of degree 301 through 500, J. Electron. Test., 3, 2, 175-176 (1992)
[90] D. Bhattacharya, D. Mukhopadhyay, D. Roy Chowdhury, A cellular automata based approach for generation of large primitive polynomial and its application to RS-Coded MPSK modulation, in: Proceedings of International Conference on Cellular Automata, Research and Industry (ACRI), 2006, pp. 204-214. · Zbl 1155.68589
[91] Bhattacharjee, K.; Paul, D.; Das, S., Pseudo-random number generation using a 3-state cellular automaton, Internat. J. Modern Phys. C, 28, 06, Article 1750078 pp. (2017)
[92] Bhattacharjee, K.; Das, S., Random number generation using decimal cellular automata, Commun. Nonlinear Sci. Numer. Simul., 78, Article 104878 pp. (2019) · Zbl 1472.68103
[93] Petrica, L., FPGA optimized cellular automaton random number generator, J. Parallel Distrib. Comput., 111, 251-259 (2018)
[94] Purkayastha, T.; De, D.; Das, K., A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata, Microprocess. Microsyst., 45, 32-44 (2016)
[95] Tomassini, M.; Perrenoud, M., Cryptography with cellular automata, Appl. Soft Comput., 1, 2, 151-160 (2001)
[96] Tomassini, M.; Perrenoud, M., Stream cyphers with one- and two-dimensional cellular automata, (Schoenauer, M.; Deb, K.; Rudolph, G.; Yao, X.; Lutton, E.; Merelo, J. J.; Schwefel, H.-P., Parallel Problem Solving from Nature PPSN VI (2000), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 722-731
[97] Chowdhury, D. R.; Sengupta, I.; Chaudhuri, P. P., A class of two-dimensional cellular automata and their applications in random pattern testing, J. Electron. Test., 5, 1, 67-82 (1994)
[98] Torres-Huitzil, C.; Delgadillo-Escobar, M.; Nuno-Maganda, M., Comparison between 2D cellular automata based pseudorandom number generators, IEICE Electron. Express, 9, 17, 1391-1396 (2012)
[99] Kang, B.; Lee, D.; Hong, C., High-performance pseudorandom number generator using two-dimensional cellular automata, (4th IEEE International Symposium on Electronic Design, Test and Applications (Delta 2008) (2008)), 597-602
[100] B. Shackleford, M. Tanaka, R.J. Carter, G. Snider, FPGA implementation of neighborhood-of-four cellular automata random number generators, in: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-Programmable Gate Arrays, 2002, pp. 106-112.
[101] Langton, C. G., Studying artificial life with cellular automata, Physica D, 22, 1-3, 120-149 (1986)
[102] Dong, E.; Yuan, M.; Du, S.; Chen, Z., A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator, Appl. Math. Model., 73, 40-71 (2019) · Zbl 1481.37057
[103] Xu, H.; Tong, X.; Meng, X., An efficient chaos pseudo-random number generator applied to video encryption, Optik, 127, 20, 9305-9319 (2016)
[104] Rezk, A. A.; Madian, A. H.; Radwan, A. G.; Soliman, A. M., Reconfigurable chaotic pseudo random number generator based on FPGA, AEU - Int. J. Electron. Commun., 98, 174-180 (2019)
[105] Meranza-Castillón, M.; Murillo-Escobar, M.; López-Gutiérrez, R.; Cruz-Hernández, C., Pseudorandom number generator based on enhanced Hénon map and its implementation, AEU - Int. J. Electron. Commun., 107, 239-251 (2019)
[106] Tutueva, A. V.; Nepomuceno, E. G.; Karimov, A. I.; Andreev, V. S.; Butusov, D. N., Adaptive chaotic maps and their application to pseudo-random numbers generation, Chaos Solitons Fractals, 133, Article 109615 pp. (2020) · Zbl 1483.37112
[107] Wang, Y.; Liu, Z.; Ma, J.; He, H., A pseudorandom number generator based on piecewise logistic map, Nonlinear Dynam., 83, 4, 2373-2391 (2016) · Zbl 1354.65012
[108] Li, B.; Liao, X.; Jiang, Y., A novel image encryption scheme based on improved random number generator and its implementation, Nonlinear Dynam., 95, 3, 1781-1805 (2019) · Zbl 1432.68531
[109] Lv, X.; Liao, X.; Yang, B., A novel pseudo-random number generator from coupled map lattice with time-varying delay, Nonlinear Dynam., 94, 1, 325-341 (2018)
[110] Öztürk, I.; Kılıç, R., A novel method for producing pseudo random numbers from differential equation-based chaotic systems, Nonlinear Dynam., 80, 3, 1147-1157 (2015)
[111] Sahari, M. L.; Boukemara, I., A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption, Nonlinear Dynam., 94, 1, 723-744 (2018)
[112] Hamza, R., A novel pseudo random sequence generator for image-cryptographic applications, J. Inf. Secur. Appl., 35, 119-127 (2017)
[113] Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Aldea, C.; Celma, S., Chaos-based bitwise dynamical pseudorandom number generator on FPGA, IEEE Trans. Instrum. Meas., 68, 1, 291-293 (2019)
[114] Ayubi, P.; Setayeshi, S.; Rahmani, A. M., Deterministic chaos game: A new fractal based pseudo-random number generator and its cryptographic application, J. Inf. Secur. Appl., 52, Article 102472 pp. (2020)
[115] Cang, S.; Kang, Z.; Wang, Z., Pseudo-random number generator based on a generalized conservative Sprott-A system, Nonlinear Dynam., 104, 1, 827-844 (2021)
[116] Chen, S.; Li, B.; Zhou, C., FPGA implementation of SRAM PUFs based cryptographically secure pseudo-random number generator, Microprocess. Microsyst., 59, 57-68 (2018)
[117] Avaroğlu, E.; Koyuncu, I.; Özer, A. B.; Türk, M., Hybrid pseudo-random number generator for cryptographic systems, Nonlinear Dynam., 82, 1, 239-248 (2015)
[118] Neugebauer, F.; Polian, I.; Hayes, J. P., S-box-based random number generation for stochastic computing, Microprocess. Microsyst., 61, 316-326 (2018)
[119] Ullah, I.; Azam, N. A.; Hayat, U., Efficient and secure substitution box and random number generators over Mordell elliptic curves, J. Inf. Secur. Appl., 56, Article 102619 pp. (2021)
[120] Savvidy, K. G., The MIXMAX random number generator, Comput. Phys. Comm., 196, 161-165 (2015) · Zbl 1360.65031
[121] Bakiri, M.; Guyeux, C.; Couchot, J.-F.; Oudjida, A. K., Survey on hardware implementation of random number generators on FPGA: Theory and experimental analyses, Comp. Sci. Rev., 27, 135-153 (2018) · Zbl 1386.65005
[122] Yang, Y.-G.; Zhao, Q.-Q., Novel pseudo-random number generator based on quantum random walks, Sci. Rep., 6, 1, 1-11 (2016)
[123] EL-Latif, A. A.A.; Abd-El-Atty, B.; Venegas-Andraca, S. E., Controlled alternate quantum walk-based pseudo-random number generator and its application to quantum color image encryption, Physica A, 547, Article 123869 pp. (2020) · Zbl 07530161
[124] L’Ecuyer, P.; Munger, D.; Oreshkin, B.; Simard, R., Random numbers for parallel computers: Requirements and methods, with emphasis on GPUs, Math. Comput. Simulation, 135, 3-17 (2017), Special Issue: 9th IMACS Seminar on Monte Carlo Methods · Zbl 1540.65012
[125] McEliece, R. J., Finite Field for Scientists and Engineers (1987), Kluwer Academic Publishers: Kluwer Academic Publishers Norwell, MA, USA · Zbl 0662.94014
[126] L’Ecuyer, P.; Simard, R.; Wegenkittl, S., Sparse serial tests of uniformity for random number generators, SIAM J. Sci. Comput., 24, 2, 652-668 (2002) · Zbl 1037.62006
[127] L’Ecuyer, P.; Cordeau, J.-F.; Simard, R., Close-point spatial tests and their application to random number generators, Oper. Res., 48, 2, 308-317 (2000) · Zbl 1106.65301
[128] Ziv, J.; Lempel, A., Compression of individual sequences via variable-rate coding, IEEE Trans. Inform. Theory, IT-24, 5, 530-536 (1978) · Zbl 0392.94004
[129] Marsaglia, G., A current view of random number generators, (Computer Science and Statistics, Sixteenth Symposium on the Interface (1985), Elsevier Science Publishers, North-Holland: Elsevier Science Publishers, North-Holland Amsterdam), 3-10
[130] Shchur, L. N.; Heringa, J. R.; Blöte, H. W.J., Simulation of a directed random-walk model the effect of pseudo-random-number correlations, Physica A, 241, 3, 579-592 (1997)
[131] Bhattacharjee, K.; Das, S., PRNG Library (2021), GitHub, https://github.com/kamalikaB/, Accessed on Nov 26, 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.