×

Bilattices and hyperidentities. (English. Russian original) Zbl 1294.06007

Proc. Steklov Inst. Math. 274, 174-192 (2011); translation from Tr. Mat. Inst. Steklova 274, 191-209 (2011).
Summary: Bilattices as algebras with two lattice structures were introduced by M. Ginsberg and M. Fitting in 1986–1990. They have found wide applications in logic programming, multivalued logic, and artificial intelligence. We call these bilattices Ginsberg’s bilattices. The description of Ginsberg’s bilattices was obtained by various authors under the conditions of interlacement (or distributivity) and boundedness. In this paper, we prove that this description remains true without the second condition, while interlacement can be replaced with a weaker form called weak interlacement here. In particular, we prove that every weakly interlaced bilattice is isomorphic to the superproduct of two lattices, while every weakly interlaced Ginsberg bilattice is isomorphic to the Ginsberg superproduct of two equal lattices.

MSC:

06B20 Varieties of lattices
06B75 Generalizations of lattices
08B05 Equational logic, Mal’tsev conditions
Full Text: DOI

References:

[1] B. H. Arnold, ”Distributive Lattices with a Third Operation Defined,” Pac. J. Math. 1, 33–41 (1951). · Zbl 0043.26501 · doi:10.2140/pjm.1951.1.33
[2] S. A. Kiss, Transformations on Lattices and Structures of Logic (New York, 1947).
[3] J. Jakubik and M. Kolibiar, ”On Some Properties of a Pair of Lattices,” Czech. Math. J. 4, 1–27 (1954). · Zbl 0059.02601
[4] J. Jakubik and M. Kolibiar, ”Lattices with a Third Distributive Operation,” Math. Slovaca 27(3), 287–292 (1977). · Zbl 0391.06007
[5] M. L. Ginsberg, ”Multivalued Logics: a Uniform Approach to Reasoning in Artificial Intelligence,” Comput. Intell. 4, 265–316 (1988). · doi:10.1111/j.1467-8640.1988.tb00280.x
[6] M. Fitting, ”Bilattices in Logic Programming,” in Proc. 20th Int. Symp. on Multiple-Valued Logic, ISMVL 1990 (IEEE, New York, 1990), pp. 238–246.
[7] M. Fitting, ”Logic Programming on a Topological Bilattice,” Fundam. Inform. 11, 209–218 (1988). · Zbl 0647.68096
[8] M. Fitting, ”Bilattices and the Semantics of Logic Programming,” J. Log. Program. 11, 91–116 (1991). · Zbl 0757.68028 · doi:10.1016/0743-1066(91)90014-G
[9] B. Jonsson, ”Distributive Bilattices,” Preprint (Vanderbilt Univ., Nashville, 1994).
[10] B. Mobasher, D. Pigozzi, and G. Slutzki, ”Multi-valued Logic Programming Semantics: An Algebraic Approach,” Theor. Comput. Sci. 171, 77–109 (1997). · Zbl 0874.68046 · doi:10.1016/S0304-3975(96)00126-0
[11] B. Mobasher, D. Pigozzi, G. Slutzki, and G. Voutsadakis, ”A Duality Theory for Bilattices,” Algebra Univers. 43, 109–125 (2000). · Zbl 1012.06008 · doi:10.1007/s000120050149
[12] A. Romanowska and A. Trakul, ”On the Structure of Some Bilattices,” in Universal and Applied Algebra (World Sci., Singapore, 1989), pp. 235–253. · Zbl 0738.06008
[13] A. Avron, ”The Structure of Interlaced Bilattices,” Math. Struct. Comput. Sci. 6, 287–299 (1996). · Zbl 0856.06005 · doi:10.1017/S0960129500001018
[14] Yu. M. Movsisyan, A. B. Romanowska, and J. D. H. Smith, ”Superproducts, Hyperidentities, and Algebraic Structures of Logic Programming,” J. Comb. Math. Comb. Comput. 58, 101–111 (2006). · Zbl 1108.68028
[15] Yu. M. Movsisyan, Introduction to the Theory of Algebras with Hyperidentities (Yerevan State Univ., Yerevan, 1986) [in Russian]. · Zbl 0675.08001
[16] Yu. M. Movsisyan, ”Hyperidentities in Algebras and Varieties,” Usp. Mat. Nauk 53(1), 61–114 (1998) [Russ. Math. Surv. 53, 57–108 (1998)]. · Zbl 0921.08005 · doi:10.4213/rm9
[17] Yu. M. Movsisyan, ”Algebras with Hyperidentities of the Variety of Boolean Algebras,” Izv. Ross. Akad. Nauk, Ser. Mat. 60(6), 127–168 (1996) [Izv. Math. 60, 1219–1260 (1996)]. · Zbl 0885.08002 · doi:10.4213/im98
[18] Yu. M. Movsisyan, ”Hyperidentities of Boolean Algebras,” Izv. Ross. Akad. Nauk, Ser. Mat. 56(3), 654–672 (1992) [Russ. Acad. Sci. Izv. Math. 40, 607–622 (1993)]. · Zbl 0773.08003
[19] R. Padmanabhan and P. Penner, ”Binary Hyperidentities of Lattices,” Aequationes Math. 44, 154–167 (1992). · Zbl 0761.08002 · doi:10.1007/BF01830976
[20] R. Padmanabhan and P. Penner, ”A Hyperbase for Binary Lattice Hyperidentities,” J. Autom. Reasoning 24, 365–370 (2000). · Zbl 0945.06004 · doi:10.1023/A:1006279127474
[21] K. Denecke and S. L. Wismath, Hyperidentities and Clones (Gordon and Breach, Amsterdam, 2000). · Zbl 0960.08001
[22] J. Koppitz and K. Denecke, M-Solid Varieties of Algebras (Springer, New York, 2006). · Zbl 1094.08001
[23] A. D. Anosov, ”On Homomorphisms of Many-Sorted Algebraic Systems in Connection with Cryptographic Applications,” Diskretn. Mat. 19(2), 27–44 (2007) [Discrete Math. Appl. 17 (4), 331–347 (2007)]. · Zbl 1282.08005 · doi:10.4213/dm17
[24] J. M. Font and M. Moussavi, ”Note on a Six-Valued Extension of Tree-Valued Logic,” J. Appl. Non-Class. Logic 3, 173–187 (1993). · Zbl 0806.03019 · doi:10.1080/11663081.1993.10510806
[25] M. Kondo, ”On the Structures of Weak Interlaced Bilattice,” in Proc. 32nd Int. Symp. on Multiple-Valued Logic, ISMVL 2002, May 15–18, 2002, Boston, MA (IEEE, Washington, DC, 2002), p. 23.
[26] G. Grätzer, Lattice Theory: Foundation (Birkhäuser, Basel, 2011).
[27] Yu. M. Movsisyan and L. M. Budaghyan, ”The Elementary Characterization of Algebras with Hyperidentities of Boolean Algebras,” in Abstr. Int. Conf. on Mathematical Logic, Algebra and Set Theory Dedicated to the 100th Anniversary of P.S. Novikov, Moscow, Aug. 27–31, 2001 (Moscow State Univ., Moscow, 2001), p. 32.
[28] Yu. M. Movsisyan and L. M. Budaghyan, ”On Elementary Decidability of Quasi-Boolean Algebras,” in Mathematics in Armenia, Advances and Perspectives: Proc. Int. Conf., Yerevan, Armenia, Sept. 30–Oct. 7, 2003 (Yerevan State Univ., Yerevan, 2003), pp. 55–57.
[29] B. I. Plotkin, Universal Algebra, Algebraic Logic, and Databases (Nauka, Moscow, 1991; Kluwer, Dordrecht, 1994). · Zbl 0769.68018
[30] P. J. Higgins, ”Algebras with a Scheme of Operators,” Math. Nachr. 27, 115–132 (1963). · Zbl 0117.25903 · doi:10.1002/mana.19630270108
[31] G. Birkhoff and J. D. Lipson, ”Heterogeneous Algebras,” J. Comb. Theory 8, 115–133 (1970). · Zbl 0211.02003 · doi:10.1016/S0021-9800(70)80014-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.