×

Structural analysis of the partial state and input observability for structured linear systems: application to distributed systems. (English) Zbl 1298.93076

Summary: This paper deals with the partial state and input observability analysis for structured linear systems with an application to distributed systems. The proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. More precisely, we express, in simple graphic terms, necessary and sufficient conditions for the strong observability of a state or an input component. These results are then directly applied to study the observability of a distributed system in some different configurations. In fact, we define two configurations called decentralized interconnected observation scheme and decentralized autonomous observation scheme, for which we check whether or not any given part of the states or the inputs of a considered subsystem is strongly observable. All the provided conditions are easy to verify because they are based on comparison of integers and on finding paths in a digraph.

MSC:

93B07 Observability
93C05 Linear systems in control theory
05C90 Applications of graph theory
93C15 Control/observation systems governed by ordinary differential equations

References:

[1] Basile, G.; Marro, G., On observability of linear time-invariant systems with unknown inputs, J Optim Theory Appl, 3, 6, 410-415 (1969) · Zbl 0165.10203
[2] Basile, G.; Marro, G., A new characterization of some structural properties of linear systems: unknown-input observability, invertibility and functional controllability, Int J Control, 17, 5, 931-943 (1973) · Zbl 0255.93009
[3] Boukhobza, T.; Hamelin, F.; Martinez-Martinez, S., State and input observability for structured linear systems: a graph-theoretic approach, Automatica, 43, 7, 1204-1210 (2007) · Zbl 1123.93024
[4] Boukhobza, T.; Hamelin, F.; Sauter, D., Observability of structured linear systems in descriptor form: a graph-theoretic approach, Automatica, 42, 4, 629-635 (2006) · Zbl 1102.93006
[5] Chu, D., Disturbance decoupled observer design for linear time-invariant systems: a matrix pencil approach, IEEE Trans Autom Control, 45, 8, 1569-1575 (2000) · Zbl 0991.93105
[6] Chu, D.; Mehrmann, V., Disturbance decoupled observer design for descriptor systems, Syst Control Lett, 38, 1, 37-48 (1999) · Zbl 0948.93005
[7] Commault, C.; Dion, J. M.; Hovelaque, V., A geometric approach for structured systems: application to disturbance decoupling, Automatica, 33, 3, 403-409 (1997) · Zbl 0878.93015
[8] Dion, J. M.; Commault, C.; van der Woude, J. W., Generic properties and control of linear structured systems: a survey, Automatica, 39, 7, 1125-1144 (2003) · Zbl 1023.93002
[9] Hautus, M. L.J., Strong detectability and observers, Linear Algebr Appl, 50, 353-360 (1983) · Zbl 0528.93018
[10] Hou, M.; Müller, P. C., Design of observers for linear systems with unknown inputs, IEEE Trans Autom Control, 37, 6, 871-875 (1992) · Zbl 0775.93021
[11] Hou, M.; Mü ller, P. C., Design of decentralized linear state function observers, Automatica, 30, 11, 1801-1805 (1994) · Zbl 0819.93013
[12] Hou, M.; Müller, P. C., Causal observability of descriptor systems, IEEE Trans Autom Control, 44, 1, 158-163 (1999) · Zbl 1056.93505
[13] Hou, M.; Müller, P. C., Observer design for descriptor systems, IEEE Trans Autom Control, 44, 1, 164-169 (1999) · Zbl 1056.93504
[14] Hou, M.; Patton, R. J., Input observability and input reconstruction, Automatica, 34, 6, 789-794 (1998) · Zbl 0959.93006
[15] Hou, M.; Pugh, A. C.; Müller, P. C., Disturbance decoupled functional observers, IEEE Trans Autom Control, 44, 2, 382-386 (1999) · Zbl 0958.93017
[16] Hovelaque, V.; Commault, C.; Dion, J. M., Analysis of linear structured systems using a primal-dual algorithm, Syst Control Lett, 27, 73-85 (1996) · Zbl 0875.93117
[17] Johansson, K. H.; Nunes, J. L.R., A multivariable laboratory process with an adjustable zero., (American Control Conference. American Control Conference, Philadelphia, USA (1998)), 2045-2049
[18] Koenig, D., Unknown input proportional multipleintegral observer design for linear descriptor systems: application to state and fault estimation, IEEE Trans Autom Control, 50, 2, 212-217 (2005) · Zbl 1365.93487
[19] Kudva, P.; Viswanadham, N.; Ramakrishna, A., Observers for linear systems with unknown inputs, IEEE Trans Autom Control, 25, 1, 113-115 (1980), AC · Zbl 0443.93012
[20] Martinez-Martinez, S.; Mader, T.; Boukhobza, T.; Hamelin, F., LISA: a linear structured system analysis program., (Workshop de l’Institut Franco-Allemand Pour Les Applications de la Recherche (IAR/ACD). Workshop de l’Institut Franco-Allemand Pour Les Applications de la Recherche (IAR/ACD), Nancy, France (2006)) · Zbl 1123.93024
[21] Mercangöz, M.; Doyle, F. J., Distributed model predictive control of an experimental four-tank system, J Process Control, 17, 3, 297-308 (2007)
[22] Micali, S.; Vazirani, V. V., An \(O(|V^{1/2}\) E|) algorithm for finding maximum matching in general graphs., (Proceedings of the 21st Annual Symposium on the Foundations of Computer Science (1980)), 17-2723
[23] Murota, K., System Analysis by Graphs Matroids. (1987), Springer-Verlag: Springer-Verlag New York, USA · Zbl 0624.05001
[24] Reinschke, K. J., Multivariable Control: A Graph Theoretic Approach. (1988), Springer-Verlag: Springer-Verlag New York, USA · Zbl 0682.93006
[25] Saif, M.; Guan, Y., Decentralized state estimation in large-scale interconnected dynamical systems, Automatica, 28, 1, 215-219 (1992)
[26] Sanders, C. W.; Tacker, E. C.; Lindon, T. D., A new class of decentralized filters for interconnected systems, IEEE Trans Autom Control, 23, 2, 259-262 (1974), AC · Zbl 0275.93048
[27] Trentelman, H. L.; Stoorvogel, A. A.; Hautus, M., Control Theory for Linear Systems. (2001), Springer: Springer London, UK · Zbl 0963.93004
[28] Trinh, H.; Ha, Q., Design of linear functional observers for linear systems with unknown inputs, Int J Syst Sci, 31, 6, 741-749 (2000) · Zbl 1080.93627
[29] Tsui, C. C., A new design approach to unknown input observers, IEEE Trans Autom Control, 41, 3, 464-468 (1996) · Zbl 1034.93509
[30] van der Woude, J. W., The generic number of invariant zeros of a structured linear system, SIAM J Control Optim, 38, 1, 1-21 (2000) · Zbl 0952.93056
[31] van der Woude, J. W.; Commault, C.; Dion, J. M., Zero orders and dimensions of some invariant subspaces in linear structured systems, Math Control Signals Syst, 16, 2-3, 225-237 (2003) · Zbl 1029.93033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.