×

Lebesgue type decomposition of subspaces of Fourier-Stieltjes algebras. (English) Zbl 1028.43002

Let \(G\) be a locally compact group. For a unitary representation \(\pi\) of \(G\), let \(B_\pi(G)\) denote the \(w^*\)-closed linear subspace of the Fourier-Stieltjes algebra \(B(G)\) generated by all coefficients of \(\pi\), and \(B^0_\pi(G)\) the closure of \(B_\pi(G)\cap A_c(G)\), where \(A_c(G)\) consists of all functions in the Fourier algebra \(A(G)\) with compact support. The authors present the following descriptions of \(B_\pi^0(G)\) and its orthogonal complement \(B^s_\pi(G)\) in \(B_\pi(G)\):
(i) \(u\in B^0_\pi(G)\) if and only if for every \(\varepsilon >0\) there exists a compact subset \(K\) of \(G\) such that \(|\langle u,f\rangle |< \varepsilon\) for all \(f\in L^1(G\setminus K)\) with \(|\pi(f)\|\leq 1\); (ii) \(u\in B^s_\pi(G)\) if and only if for every \(\varepsilon >0\) and each compact subset \(K\) of \(G\) there exists \(f\in L^1(G \setminus K)\) such that \(|\langle u,f\rangle |>\|u\|-\varepsilon\) and \(\|\pi(f) \|\leq 1\).
This generalizes a recent result of the reviewer. Let \({\mathcal B}^0_\pi (G)=A_c(G) +B^0_\pi(G)\). The major portion of the paper is devoted to the study of how \(B^0_\pi(G)\) and \({\mathcal B}^0_\pi(G)\) depend on \(\pi\) and \(G\). It is proved that, for some classes of locally compact groups \(G\), there is a dichotomy in the sense that for any \(\pi\) either \(B^0_\pi(G)= \{0\}\) or \(B^0_\pi(G) =A(G)\). The authors also characterize functions in \({\mathcal B}^0_\pi(G)\) and study the question of whether \({\mathcal B}^0_\pi (G)=A(G)\) implies that \(\pi\) weakly contains the regular representation \(\rho\). Several results are obtained in this paper which strongly support the conjecture that this question has an affirmative answer in general.

MSC:

43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
22D10 Unitary representations of locally compact groups
Full Text: DOI

References:

[1] Michel Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 265 – 288 (French, with English summary). · Zbl 0353.22009
[2] Larry Baggett and Keith Taylor, Groups with completely reducible regular representation, Proc. Amer. Math. Soc. 72 (1978), no. 3, 593 – 600. · Zbl 0403.22007
[3] Larry Baggett and Keith Taylor, A sufficient condition for the complete reducibility of the regular representation, J. Funct. Anal. 34 (1979), no. 2, 250 – 265. · Zbl 0425.22007 · doi:10.1016/0022-1236(79)90033-8
[4] Alain Belanger and Brian E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group, J. Math. Anal. Appl. 193 (1995), no. 2, 390 – 405. · Zbl 0854.43010 · doi:10.1006/jmaa.1995.1242
[5] M. E. B. Bekka, A. T. Lau, and G. Schlichting, On invariant subalgebras of the Fourier-Stieltjes algebra of a locally compact group, Math. Ann. 294 (1992), no. 3, 513 – 522. · Zbl 0787.22005 · doi:10.1007/BF01934339
[6] David Bernier and Keith F. Taylor, Wavelets from square-integrable representations, SIAM J. Math. Anal. 27 (1996), no. 2, 594 – 608. · Zbl 0843.42018 · doi:10.1137/S0036141093256265
[7] L. J. Bunce, The Dunford-Pettis property in the predual of a von Neumann algebra, Proc. Amer. Math. Soc. 116 (1992), no. 1, 99 – 100. · Zbl 0810.46060
[8] R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. · Zbl 0192.48602
[9] Cho-Ho Chu, A note on scattered \?*-algebras and the Radon-Nikodým property, J. London Math. Soc. (2) 24 (1981), no. 3, 533 – 536. · Zbl 0438.46041 · doi:10.1112/jlms/s2-24.3.533
[10] Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. · Zbl 0704.22007
[11] Jacques Dixmier, \?*-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett; North-Holland Mathematical Library, Vol. 15. · Zbl 0372.46058
[12] Jacques Dixmier, von Neumann algebras, North-Holland Mathematical Library, vol. 27, North-Holland Publishing Co., Amsterdam-New York, 1981. With a preface by E. C. Lance; Translated from the second French edition by F. Jellett. · Zbl 0473.46040
[13] Raouf Doss, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361 – 363. · Zbl 0157.44702
[14] M. Duflo and Calvin C. Moore, On the regular representation of a nonunimodular locally compact group, J. Functional Analysis 21 (1976), no. 2, 209 – 243. · Zbl 0317.43013
[15] Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181 – 236 (French). · Zbl 0169.46403
[16] J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424 – 447. · Zbl 0195.42201
[17] Volker Flory, On the Fourier-algebra of a locally compact amenable group, Proc. Amer. Math. Soc. 29 (1971), 603 – 606. · Zbl 0217.14903
[18] V. Flory, Eine Lebesgue-Zerlegung und funktorielle Eigenschaften der Fourier-Stieltjes Algebra, Inaugural Dissertation, Universität Heidelberg, 1972.
[19] E. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra \?(\?) and of the measure algebra \?(\?), Rocky Mountain J. Math. 11 (1981), no. 3, 459 – 472. · Zbl 0502.43004 · doi:10.1216/RMJ-1981-11-3-459
[20] F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis 4 (1969), 295 – 315. · Zbl 0195.42301
[21] Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1 – 40. · Zbl 0219.22011 · doi:10.1515/crll.1971.246.1
[22] Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91 – 123 (English, with French summary). · Zbl 0257.43007
[23] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. · Zbl 0830.43001
[24] Roger E. Howe, The Fourier transform for nilpotent locally compact groups. I, Pacific J. Math. 73 (1977), no. 2, 307 – 327. · Zbl 0396.43013
[25] Eberhard Kaniuth, On primary ideals in group algebras, Monatsh. Math. 93 (1982), no. 4, 293 – 302. · Zbl 0481.43003 · doi:10.1007/BF01295230
[26] Anthony To Ming Lau, Closed convex invariant subsets of \?_{\?}(\?), Trans. Amer. Math. Soc. 232 (1977), 131 – 142. · Zbl 0363.43002
[27] Anthony To Ming Lau and Viktor Losert, The \?*-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), no. 1, 1 – 30. · Zbl 0788.22006 · doi:10.1006/jfan.1993.1024
[28] Anthony To Ming Lau and Ali Ülger, Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), no. 1, 321 – 359. · Zbl 0778.43003
[29] Peter F. Mah and Tianxuan Miao, Extreme points of the unit ball of the Fourier-Stieltjes algebra, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1097 – 1103. · Zbl 0940.43003
[30] Tianxuan Miao, Decomposition of \?(\?), Trans. Amer. Math. Soc. 351 (1999), no. 11, 4675 – 4692. · Zbl 0942.43001
[31] Calvin C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401 – 410. · Zbl 0236.22010
[32] Richard D. Mosak, The \?\textonesuperior - and \?*-algebras of [\?\?\?]\(^{-}\)_{\?} groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277 – 310. · Zbl 0213.13601
[33] Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. · Zbl 0648.43001
[34] Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. · Zbl 0597.43001
[35] Marc A. Rieffel, Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner, Studies in analysis, Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, 1979, pp. 43 – 82. · Zbl 0449.22002
[36] Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. · Zbl 0436.46043
[37] Keith F. Taylor, Geometry of the Fourier algebras and locally compact groups with atomic unitary representations, Math. Ann. 262 (1983), no. 2, 183 – 190. · Zbl 0488.43009 · doi:10.1007/BF01455310
[38] Garth Warner, Harmonic analysis on semi-simple Lie groups. II, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 189. · Zbl 0265.22021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.