×

The alternative Dunford-Pettis property in \(C^*\)-algebras and von Neumann preduals. (English) Zbl 1020.46003

A Banach space \(E\) is said to have the Dunford-Pettis property if, for each pair \((x_j)\) and \((\rho_j)\) of sequences in \(E\) and its dual space \(E^*\), respectively, both of which converge weakly to zero, the sequence \((\rho_j(x_j))\) converges to zero. A Banach space \(E\) with the Dunford-Pettis property automatically has the alternative Dunford-Pettis property, that, if \((x_j)\) is a sequence of elements of norm one in \(E\) converging weakly to an element \(x\) in \(E\) of norm one, and \((\rho_j)\) is a sequence in \(E^*\) converging weakly to zero, then the sequence \((\rho_j(x_j))\) converges to zero. The authors show that, when \(E\) is a \(C^*\)-algebra, the two conditions are equivalent, and that the predual of a \(W^*\)-algebra \(A\) has the alternative Dunford-Pettis property if and only if \(A\) is of Type I.

MSC:

46B28 Spaces of operators; tensor products; approximation properties
46L05 General theory of \(C^*\)-algebras
46L10 General theory of von Neumann algebras
Full Text: DOI

References:

[1] Charles A. Akemann and Gert K. Pedersen, Ideal perturbations of elements in \?*-algebras, Math. Scand. 41 (1977), no. 1, 117 – 139. · Zbl 0377.46049 · doi:10.7146/math.scand.a-11707
[2] L. J. Bunce, The Dunford-Pettis property in the predual of a von Neumann algebra, Proc. Amer. Math. Soc. 116 (1992), no. 1, 99 – 100. · Zbl 0810.46060
[3] Cho-Ho Chu and Bruno Iochum, The Dunford-Pettis property in \?*-algebras, Studia Math. 97 (1990), no. 1, 59 – 64. · Zbl 0734.46034
[4] C.-H. Chu, B. Iochum, and S. Watanabe, \?*-algebras with the Dunford-Pettis property, Function spaces (Edwardsville, IL, 1990) Lecture Notes in Pure and Appl. Math., vol. 136, Dekker, New York, 1992, pp. 67 – 70. · Zbl 0817.46054
[5] Alain Connes and Erling Størmer, Homogeneity of the state space of factors of type \?\?\?\(_{1}\), J. Functional Analysis 28 (1978), no. 2, 187 – 196. · Zbl 0408.46048
[6] Joe Diestel, A survey of results related to the Dunford-Pettis property, Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979) Contemp. Math., vol. 2, Amer. Math. Soc., Providence, R.I., 1980, pp. 15 – 60.
[7] Walden Freedman, An alternative Dunford-Pettis property, Studia Math. 125 (1997), no. 2, 143 – 159. · Zbl 0897.46009
[8] Grothendieck, A., Sur les applications lineaires faiblement compactes d’espaces du type \(C(K)\), Canad. J. Math. 5 (1953), 129-173. · Zbl 0050.10902
[9] Uffe Haagerup and Erling Størmer, Equivalence of normal states on von Neumann algebras and the flow of weights, Adv. Math. 83 (1990), no. 2, 180 – 262. · Zbl 0717.46054 · doi:10.1016/0001-8708(90)90078-2
[10] Harald Hanche-Olsen and Erling Størmer, Jordan operator algebras, Monographs and Studies in Mathematics, vol. 21, Pitman (Advanced Publishing Program), Boston, MA, 1984. · Zbl 0561.46031
[11] Masamichi Hamana, On linear topological properties of some \?*-algebras, Tôhoku Math. J. (2) 29 (1977), no. 1, 157 – 163. · Zbl 0346.46045 · doi:10.2748/tmj/1178240703
[12] Martin, M. and Peralta, A. M., The alternative Dunford-Pettis property in the predual of a von Neumann algebra, Studia Math. 147 (2001), 197-200. · Zbl 0998.46028
[13] Gert K. Pedersen, \?*-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. · Zbl 0416.46043
[14] Shôichirô Sakai, \?*-algebras and \?*-algebras, Springer-Verlag, New York-Heidelberg, 1971. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. · Zbl 0233.46074
[15] Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. · Zbl 0436.46043
[16] M. Takesaki, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin-New York, 1970. · Zbl 0193.42502
[17] Masamichi Takesaki, Conditional expectations in von Neumann algebras, J. Functional Analysis 9 (1972), 306 – 321. · Zbl 0245.46089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.