×

An inexact proximal method with proximal distances for quasimonotone equilibrium problems. (English) Zbl 1380.90264

Summary: In this paper, we propose an inexact proximal point method to solve equilibrium problems using proximal distances and the diagonal subdifferential. Under some natural assumptions on the problem and the quasimonotonicity condition on the bifunction, we prove that the sequence generated by the method converges to a solution point of the problem.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C25 Convex programming
90C51 Interior-point methods
Full Text: DOI

References:

[1] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145 (1994) · Zbl 0888.49007
[2] Flores-Bazán, F.: Existence theory for finite dimensional pseudomonotone equilibrium problems. Acta. Appl. Math. 77, 249-297 (2003) · Zbl 1053.90110 · doi:10.1023/A:1024971128483
[3] Iusem, A.N., Pennanen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 13, 1080-1097 (2003) · Zbl 1053.90134 · doi:10.1137/S1052623401399587
[4] Aoyama, K., Kimura, Y., Takahashi, W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15, 395-409 (2008) · Zbl 1165.47036
[5] Castellani, M., Giuli, M.: Pseudomonotone diagonal subdifferential operators. J. Convex Anal. 20, 1-12 (2013) · Zbl 1292.47031
[6] Flores-Bazán, F.: Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex case. SIAM J. Optim. 11, 675-690 (2000) · Zbl 1002.49013 · doi:10.1137/S1052623499364134
[7] Oliveira, P.R., Santos, P.S.M., Silva, A.N.: A Tikhonov-type regularization for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 401, 336-342 (2013) · Zbl 1259.47075 · doi:10.1016/j.jmaa.2012.12.034
[8] Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79-92 (2005) · Zbl 1064.49004 · doi:10.1007/s10957-004-6466-9
[9] Bianchi, M., Kassay, G., Pini, R.: Exitence of equilibria via Ekeland’s principle. J. Math. Anal. Appl. 305, 502-512 (2005) · Zbl 1061.49005 · doi:10.1016/j.jmaa.2004.11.042
[10] Iusem, A.N., Sosa, W.: A proximal point method for equilibrium problems in Hilbert spaces. Optimization 59, 1259-1274 (2010) · Zbl 1206.90212 · doi:10.1080/02331931003603133
[11] Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program. 11, 259-273 (2009) · Zbl 1158.90009 · doi:10.1007/s10107-007-0125-5
[12] Burachik, R., Kassay, G.: On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Anal. 75, 6456-6464 (2012) · Zbl 1410.65216 · doi:10.1016/j.na.2012.07.020
[13] Flores-Bazán, F., Flores-Bazán, F.: Vector equilibrium problems under asymptotic analysis. J. Global Optim. 26, 141-166 (2003) · Zbl 1036.90060 · doi:10.1023/A:1023048928834
[14] Chadli, O., Chbani, Z., Riahi, H.: Equilibrium problems with generalized monotone bifunction and applications to variational inequalities. J. Optim. Theory Appl. 105, 299-323 (2000) · Zbl 0966.91049 · doi:10.1023/A:1004657817758
[15] Konnov, I.V., Schaible, S.: Duality for equilibrium problems under generalized monotonicity. J. Optim. Theory Appl. 104, 395-408 (2000) · Zbl 1016.90066 · doi:10.1023/A:1004665830923
[16] Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31-43 (1996) · Zbl 0903.49006 · doi:10.1007/BF02192244
[17] Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359, 508-513 (2009) · Zbl 1176.90644 · doi:10.1016/j.jmaa.2009.06.005
[18] Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optimization 62, 271-283 (2013) · Zbl 1290.90084 · doi:10.1080/02331934.2011.607497
[19] Nguyen, T.T.V., Strodiot, J.J., Nguyen, V.H.: The interior proximal extragradient method for solving equilibrium problems. J. Glob. Optim. 44, 175-192 (2009) · Zbl 1192.90212 · doi:10.1007/s10898-008-9311-0
[20] Quoc, T.D., Muu, L.D.: Iterative methods for solving monotone equilibrium problems via dual gap functions. Comput. Optim. Appl. 51, 709-728 (2012) · Zbl 1268.90106 · doi:10.1007/s10589-010-9360-4
[21] Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[22] Khatibzadeh, H., Mohebbi, V., Ranjbar, S.: Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems. Optim. Methods Softw. 30, 1146-1163 (2015) · Zbl 1332.47050 · doi:10.1080/10556788.2015.1025402
[23] Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119, 317-333 (2003) · Zbl 1084.49009 · doi:10.1023/B:JOTA.0000005448.12716.24
[24] Mashreghi, J., Nasri, M.: Strong convergence of an inexact proximal point algorithm for equilibrium problems in Banach spaces. Numer. Funct. Anal. Opim. 31, 1053-1071 (2010) · Zbl 1205.90296 · doi:10.1080/01630563.2010.510611
[25] Langenberg, N.: Interior point methods for equilibrium problems. Comput. Optim. Appl. 53, 453-483 (2012) · Zbl 1284.90087 · doi:10.1007/s10589-011-9450-y
[26] Da Cruz Neto, J.S., Lopes, J.O., Soares, P.A.: A minimization algorithm for equilibrium problems with polyhedral constraints. Optimization 65, 1061-1068 (2016) · Zbl 1337.90068 · doi:10.1080/02331934.2015.1080702
[27] Papa Quiroz, E.A., Mallma Ramirez, L., Oliveira, P.R.: An inexact algorithm with proximal distances for variational inequalities. RAIRO Operations Research (2015). doi:10.13140/RG.2.1.1730.4480 · Zbl 1346.90689
[28] Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16, 697-725 (2006) · Zbl 1113.90118 · doi:10.1137/S1052623403427823
[29] Hadjisavvas, N., Schaible, S.: Quasimonotone variational inequalities in Banach spaces. J. Optim. Theory Appl. 90, 95-111 (1996) · Zbl 0904.49005 · doi:10.1007/BF02192248
[30] Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987) · Zbl 0708.90083
[31] Iusem, A.N.: On the maximal monotonicity of diagonal subdifferential operators. J. Convex Anal. 18, 489-503 (2011) · Zbl 1223.90076
[32] Villacorta, K.D.V., Oliveira, P.R.: An interior proximal method in vector optimization. Eur. J. Oper. Res. 214, 485-492 (2011) · Zbl 1244.90244 · doi:10.1016/j.ejor.2011.05.006
[33] Oliveira, P.R.: An extension of proximal methods for quasiconvex minimization on the nonnegative orthant. Eur. J. Oper. Res. 216, 26-32 (2012) · Zbl 1242.90166 · doi:10.1016/j.ejor.2011.07.019
[34] Papa Quiroz, E.A., Mallma Ramirez, L., Oliveira, P.R.: An inexact proximal method for quasiconvex minimization. Eur. J. Oper. Res. 246, 721-729 (2015) · Zbl 1346.90689 · doi:10.1016/j.ejor.2015.05.041
[35] Langenberg, N., Tichatschke, R.: Interior proximal methods for quasiconvex optimization. J. Glob Optim. 52, 641-661 (2012) · Zbl 1279.90135 · doi:10.1007/s10898-011-9752-8
[36] Kaplan, A., Tichatschke, R.: Interior proximal method for variational inequalities on nonpolyhedral sets. Discuss. Math. Diff. Inclusions Control Optim. 30, 51-59 (2007) · Zbl 1214.47063 · doi:10.7151/dmdico.1111
[37] Kaplan, A., Tichatschke, R.: Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets. Discuss. Math. Diff. Inclusions Control Optim. 30, 51-59 (2010) · Zbl 1214.47063 · doi:10.7151/dmdico.1111
[38] Shafer, W.J.: The nontransitive consumer. Econometrica 42, 913-919 (1974) · Zbl 0291.90007 · doi:10.2307/1913797
[39] Reinhard, J.: The concave nontransitive consumer. J. Global Optim. 20, 297-308 (2001) · Zbl 1011.91061 · doi:10.1023/A:1017530926041
[40] Iusem, A.N., Sosa, W.: New existence results for equilibrium problems. Nonlinear Anal. 52, 621-635 (2003) · Zbl 1017.49008 · doi:10.1016/S0362-546X(02)00154-2
[41] Konnov, I.V.: Generalized Monotone Equilibrium Problems and Variational Inequalities, Handbook of Generalized Convexity and Generalized Monotonicity. Springer, New York (2005) · Zbl 1100.49009
[42] Georgescu-Roegen, N.: Choice and revealed preference. South. Econ. J. 21, 119-130 (1954) · doi:10.2307/1054736
[43] Eckstein, J.: Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. 83, 113-123 (1998) · Zbl 0920.90117
[44] Kaplan, A., Tichatschke, R.: On inexact generalized proximal methods with a weakened error tolerance criterion. Optimization 53, 3-17 (2004) · Zbl 1068.65064 · doi:10.1080/02331930410001661217
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.