×

Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. (English) Zbl 1400.70016

Summary: This article is devoted to the analysis of the influence of the joint clearances in a mechanism of a circuit breaker, which is a 42 degree-of-freedom mechanism made of seven links, seven revolute joints, and four unilateral contacts with friction. Spatial (3D) revolute joints are modeled with both radial and axial clearances taking into account contact with flanges. Unilateral contact, Coulomb’s friction and Newton impact laws are modeled within the framework of nonsmooth mechanics without resorting to some regularizations or compliance/damping at contact. The nonsmooth contact dynamics method based on an event-capturing time-stepping scheme with a second order cone complementarity solver is used to perform the numerical integration. Furthermore, the stabilization of the constraints at the position level is made thanks to the stabilized combined projected Moreau-Jean scheme. The nonsmooth modeling approach together with an event-capturing time-stepping scheme allows us to simulate, in an efficient and robust way, the contact and impacts phenomena that occur in joints with clearances. In particular, comparing with the event-detecting time-stepping schemes, the event-capturing scheme enables us to perform the time-integration with a large number of events (impacts, sliding/sticking transitions, changes in the direction of sliding) and possibly with finite-time accumulations with a reasonable time-step length. Comparing with compliant contact models, we avoid stiff problems related with high stiffnesses at contact which generate some issues in contact stabilization and spurious oscillations during persistent contact periods. In the studied mechanisms of the circuit breakers, the numerical method deals with more than 70 contact points without any problems. Furthermore, the number of contact parameters is small–one coefficient of restitution and one coefficient of friction. Though they are sometimes difficult to measure accurately, the sensitivity of the simulation result with respect to contact parameters is low in the mechanism of the circuit breaker. It is demonstrated that this method, thanks to its robustness and efficiency, allows us to perform a sensitivity analysis using a Monte Carlo method. The numerical results are also validated by careful comparisons with experimental data, showing a very good correlation.

MSC:

70E55 Dynamics of multibody systems
70-05 Experimental work for problems pertaining to mechanics of particles and systems

References:

[1] Abadie, M.; Brogliato, B. (ed.), Dynamic simulation of rigid bodies: modelling of frictional contact, No. 551, 61-144, (2000), Berlin · Zbl 1004.70010 · doi:10.1007/3-540-45501-9_2
[2] Acary, V., Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and coulomb’s friction, Comput. Methods Appl. Mech. Eng., 256, 224-250, (2013) · Zbl 1352.74477 · doi:10.1016/j.cma.2012.12.012
[3] Acary, V., Bonnefon, O., Brémond, M., Huber, O., Pérignon, F., Sinclair, S.: SICONOS: a software for the modeling, the simulation and the control of nonsmooth dynamical systems, 2005-2016. http://siconos.gforge.inria.fr · Zbl 1004.70010
[4] Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin/Heidelberg (2008) · Zbl 1173.74001
[5] Acary, V.; Cadoux, F.; Stavroulakis, G.E. (ed.), Applications of an existence result for the Coulomb friction problem, No. 56, (2013), Berlin · doi:10.1007/978-3-642-33968-4_4
[6] Acary, V.; Cadoux, F.; Lemaréchal, C.; Malick, J., A formulation of the linear discrete Coulomb friction problem via convex optimization, Z. Angew. Math. Mech., 91, 155-175, (2011) · Zbl 1370.74114 · doi:10.1002/zamm.201000073
[7] Acary, V., Pérignon, F.: An introduction to SICONOS. Technical Report RT-0340, INRIA (2007) · Zbl 1370.74114
[8] Akhadkar, N.; Acary, V.; Brogliato, B., Analysis of collocated feedback controllers for four-bar planar mechanisms with joint clearances, Multibody Syst. Dyn., 38, 101-136, (2016) · Zbl 1351.70001 · doi:10.1007/s11044-016-9523-x
[9] Bauchau, O.A.; Rodriguez, J., Modeling of joints with clearance in flexible multibody systems, Int. J. Solids Struct., 39, 41-63, (2002) · Zbl 1090.74682 · doi:10.1016/S0020-7683(01)00186-X
[10] Ben Abdallah, M.A.; Khemili, I.; Aifaoui, N., Numerical investigation of a flexible slider-Crank mechanism with multijoints with clearance, Multibody Syst. Dyn., 38, 173-199, (2016) · doi:10.1007/s11044-016-9526-7
[11] Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 3rd edn. Springer, Switzerland (2016) · Zbl 1333.74002 · doi:10.1007/978-3-319-28664-8
[12] Brüls, O.; Acary, V.; Cardona, A., Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(α\) scheme, Comput. Methods Appl. Mech. Eng., 281, 131-161, (2014) · Zbl 1423.74659 · doi:10.1016/j.cma.2014.07.025
[13] Brutti, C.; Coglitore, G.; Valentini, P.P., Modeling 3D revolute joint with clearance and contact stiffness, Nonlinear Dyn., 66, 531-548, (2011) · doi:10.1007/s11071-010-9931-z
[14] Chase, K.W.; Greenwood, W.H., Design issues in mechanical tolerance analysis, Manuf. Rev., 1, 50-59, (1988)
[15] Chase, K.W.; Parkinson, A.R., A survey of research in the application of tolerance analysis to the design of mechanical assemblies, Res. Eng. Des., 3, 23-37, (1991) · doi:10.1007/BF01580066
[16] Chen, Y.; Su, Y.; Chen, C., Dynamic analysis of a planar slider-Crank mechanism with clearance for a high speed and heavy load press system, Mech. Mach. Theory, 98, 81-100, (2016) · doi:10.1016/j.mechmachtheory.2015.12.004
[17] OpenCascade Corp.: (2016). http://www.opencascade.org
[18] Dantan, J.Y.; Qureshi, A.J., Worst-case and statistical tolerance analysis based on quantified constraint satisfaction problems and Monte Carlo simulation, Comput. Aided Des., 41, 1-12, (2009) · doi:10.1016/j.cad.2008.11.003
[19] Association Francaise de Normalisation. NFT58000 Plastics—tolerances applicable to moulded plastic parts (1987)
[20] De Saxcé, G.: Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives. C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Astron. 314, 125-129 (1992) · Zbl 0754.73016
[21] Deck, J.F.; Dubowsky, S., On the limitations of predictions of the dynamic response of machines with clearance connections, J. Mech. Des., 116, 833-841, (1994) · doi:10.1115/1.2919457
[22] Dhande, S.G.; Chakraborty, J., Mechanical error analysis of spatial linkages, J. Mech. Des., 100, 732-738, (1978) · doi:10.1115/1.3454001
[23] Dubowsky, S.; Deck, J.F.; Costello, H., The dynamic modeling of flexible spatial machine systems with clearance connections, J. Mech. Transm. Autom., 109, 87-94, (1987) · doi:10.1115/1.3258790
[24] Flores, P., A parametric study on the dynamic response of planar multibody systems with multiple clearance joints, Nonlinear Dyn., 61, 633-653, (2010) · Zbl 1204.70008 · doi:10.1007/s11071-010-9676-8
[25] Flores, P.; Ambrósio, J., Revolute joints with clearance in multibody systems, Comput. Struct., 82, 1359-1369, (2004) · doi:10.1016/j.compstruc.2004.03.031
[26] Flores, P.; Ambrósio, J.; Claro, J.P., Dynamic analysis for planar multibody mechanical systems with lubricated joints, Multibody Syst. Dyn., 12, 47-74, (2004) · Zbl 1174.70307 · doi:10.1023/B:MUBO.0000042901.74498.3a
[27] Flores, P.; Leine, R.; Glocker, C., Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach, Multibody Syst. Dyn., 23, 165-190, (2010) · Zbl 1219.70014 · doi:10.1007/s11044-009-9178-y
[28] Garrett, R.E.; Hall, A.S., Effect of tolerance and clearance in linkage design, J. Manuf. Sci. Eng., 91, 198-202, (1969)
[29] Greenwood, W.H.; Chase, K.W., Worst case tolerance analysis with nonlinear problems, J. Manuf. Sci. Eng., 110, 232-235, (1988)
[30] Gummer, A.; Sauer, B., Influence of contact geometry on local friction energy and stiffness of revolute joints, J. Tribol., 134, (2012) · doi:10.1115/1.4006248
[31] Gummer, A.; Sauer, B., Modeling planar slider-Crank mechanisms with clearance joints in recurdyn, Multibody Syst. Dyn., 31, 127-145, (2014) · doi:10.1007/s11044-012-9339-2
[32] Haroun, A.F.; Megahed, S.M., Simulation and experimentation of multibody mechanical systems with clearance revolute joints, (2012)
[33] Huang, X.; Zhang, Y., Robust tolerance design for function generation mechanisms with joint clearances, Mech. Mach. Theory, 45, 1286-1297, (2010) · Zbl 1359.70022 · doi:10.1016/j.mechmachtheory.2010.04.003
[34] Jean, M., The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Eng., 177, 235-257, (1999) · Zbl 0959.74046 · doi:10.1016/S0045-7825(98)00383-1
[35] Jean, M.; Moreau, J.J.; Piero, G. (ed.); Maceri, F. (ed.), Dynamics in the presence of unilateral contacts and dry friction: a numerical approach, No. 304, 151-196, (1987), Berlin · Zbl 0780.73069 · doi:10.1007/978-3-7091-2967-8_10
[36] Jeang, A., Tolerance design: choosing optimal tolerance specifications in the design of machined parts, Qual. Reliab. Eng. Int., 10, 27-35, (1994) · doi:10.1002/qre.4680100107
[37] Kakizaki, T.; Deck, J.F.; Dubowsky, S., Modeling the spatial dynamics of robotic manipulators with flexible links and joint clearances, J. Mech. Des., 115, 839-847, (1993) · doi:10.1115/1.2919277
[38] Kane, V.E., Process capability indices, J. Qual. Technol., 18, 41-52, (1986)
[39] Kotz, S., Johnson, N.L.: Process Capability Indices. CRC Press, Boca Raton (1993) · Zbl 0860.62075 · doi:10.1007/978-1-4899-4465-8
[40] Krinner, A.; Thümmel, T., Non-smooth behaviour of a linkage mechanism with revolute clearance joints, 233-241, (2014), Berlin · doi:10.1007/978-94-007-7485-8_29
[41] Lampaert, V.; Swevers, J.; Al-Bender, F., Modification of the Leuven friction model structure, IEEE Trans. Autom. Control, 47, 683-687, (2002) · Zbl 1364.93516 · doi:10.1109/9.995050
[42] Lankarani, H.M.; Nikravesh, P.E., Continuous contact force models for impact analysis in multibody systems, Nonlinear Dyn., 5, 193-207, (1994)
[43] Lemaréchal, C.: Using a modulopt minimization code. Unpublished Technical Note, INRIA Rocquencourt (1980). http://people.sc.fsu.edu/ inavon/5420a/modulopt.pdf
[44] Lemaréchal, C., Panier, E.: Les modules M2QN1 et MQHESS. Unpublished Technical Note, INRIA Rocquencourt (1983). https://who.rocq.inria.fr/Jean-Charles.Gilbert/modulopt/optimization-routines/m2qn1/m2qn1.pdf
[45] Liu, C.; Tian, Q.; Hu, H., Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints, Mech. Mach. Theory, 52, 106-129, (2012) · doi:10.1016/j.mechmachtheory.2012.01.016
[46] Liu, C.; Zhang, K.; Yang, L., The compliance contact model of cylindrical joints with clearances, Acta Mech. Sin., 21, 451-458, (2005) · Zbl 1200.74116 · doi:10.1007/s10409-005-0061-7
[47] Marques, F.; Isaac, F.; Dourado, N.; Flores, P., An enhanced formulation to model spatial revolute joints with radial and axial clearances, Mech. Mach. Theory, 116, 123-144, (2017) · doi:10.1016/j.mechmachtheory.2017.05.020
[48] Moreau, J.J.; Moreau, J.J. (ed.); Panagiotopoulos, P.D. (ed.), Unilateral contact and dry friction in finite freedom dynamics, No. 302, 1-82, (1988), Wien/New York · Zbl 0703.73070 · doi:10.1007/978-3-7091-2624-0
[49] Moreau, J.J.: Some numerical methods in multibody dynamics: Application to granular materials. Eur. J. Mech /A. Solids suppl. (13), 93-114 (1994) · Zbl 0815.73009
[50] Moreau, J.J., Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Eng., 177, 329-349, (1999) · Zbl 0968.70006 · doi:10.1016/S0045-7825(98)00387-9
[51] Nigam, S.D.; Turner, J.U., Review of statistical approaches to tolerance analysis, Comput. Aided Des., 27, 6-15, (1995) · Zbl 0810.62091 · doi:10.1016/0010-4485(95)90748-5
[52] Orden, J.C.G., Analysis of joint clearances in multibody systems, Multibody Syst. Dyn., 13, 401-420, (2005) · Zbl 1284.70011 · doi:10.1007/s11044-005-3989-2
[53] Pereira, C.; Ramalho, A.; Ambrosio, J., An enhanced cylindrical contact force model, Multibody Syst. Dyn., 35, 277-298, (2015) · Zbl 1343.70009 · doi:10.1007/s11044-015-9463-x
[54] Pereira, C.M.; Ramalho, A.R.; Ambrosio, J., A critical overview of internal and external cylinder contact force models, Nonlinear Dyn., 63, 681-697, (2011) · doi:10.1007/s11071-010-9830-3
[55] Pereira, C.M.; Ramalho, A.R.; Ambrosio, J., An enhanced cylindrical contact force model, Multibody Syst. Dyn., 35, 277-298, (2015) · Zbl 1343.70009 · doi:10.1007/s11044-015-9463-x
[56] PythonOCC: 3D CAD/CAE/PLM development framework for the Python programming language (2016). http://www.pythonocc.org
[57] Salahshoor, E.; Ebrahimi, S.; Maasoomi, M., Nonlinear vibration analysis of mechanical systems with multiple joint clearances using the method of multiple scales, Mech. Mach. Theory, 105, 495-509, (2016) · doi:10.1016/j.mechmachtheory.2016.07.020
[58] Scholz, F., Tolerance stack analysis methods, Boeing, Seattle
[59] Skowronski, V.J.; Turner, J.U., Using Monte-Carlo variance reduction in statistical tolerance synthesis, Comput. Aided Des., 29, 63-69, (1997) · doi:10.1016/S0010-4485(96)00050-4
[60] Srinivasan, V., ISO deliberates statistical tolerancing, 77-87, (1998), Berlin · doi:10.1007/978-1-4615-5797-5_5
[61] Studer, C.: Numerics of Unilateral Contacts and Friction. Modeling and Numerical Time Integration in Non-Smooth Dynamics. Lecture Notes in Applied and Computational Mechanics, vol. 47. Springer, Berlin (2009) · Zbl 1162.70002 · doi:10.1007/978-3-642-01100-9
[62] Yan, S.; Xiang, W.; Zhang, L., A comprehensive model for 3D revolute joints with clearances in mechanical systems, Nonlinear Dyn., 80, 309-328, (2015) · doi:10.1007/s11071-014-1870-7
[63] Thümmel, T.; Funk, K., Multibody modelling of linkage mechanisms including friction, clearance and impact, June 20-24, Finland
[64] Thomopoulos, N.T.: Essentials of Monte Carlo Simulation: Statistical Methods for Building Simulation Models. Springer, New York (2012)
[65] Thümmel, T.: Experimentelle Mechanismen Dynamik: Messung, Modellierung, Simulation, Verifikation, Interpretation und Beeinflussung typischer Schwingungsphänomene an einem Mechanismenprüfstand. PhD thesis, München, Technische Universität München, Habil.-Schr. (2012) · Zbl 1204.70008
[66] Thümmel, T.; Ginzinger, L., Measurements and simulations of a Crank and rocker mechanism including friction, clearance and impacts, Aug. 31-Sept. 2, 2004
[67] Thümmel, T.; Roßner, M., Introduction to modelling and parameter identification methodology of linkages by measurements and simulation, Guanajuato, Mexico, 19-25 June
[68] Thümmel, T.; Rutzmoser, J.; Ulbrich, H.; Robner, M., Friction modeling and parameter value estimation of mechanisms, Stuttgart, Germany, May 29-June 1, 2012
[69] Tian, Q.; Liu, C.; Machado, M.; Flores, P., A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems, Nonlinear Dyn., 64, 25-47, (2011) · Zbl 1355.70014 · doi:10.1007/s11071-010-9843-y
[70] Tian, Q.; Lou, J.; Mikkola, A., A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics, Mech. Mach. Theory, 107, 210-228, (2017) · doi:10.1016/j.mechmachtheory.2016.09.006
[71] Tian, Q.; Xiao, Q.; Sun, Y.; Hu, H.; Liu, H.; Flores, P., Coupling dynamics of a geared multibody system supported by elastohydrodynamic lubricated cylindrical joints, Multibody Syst. Dyn., 33, 259-284, (2015) · doi:10.1007/s11044-014-9420-0
[72] Turner, J.U.; Wozny, M.J., Tolerances in computer-aided geometric design, Vis. Comput., 3, 214-226, (1987) · doi:10.1007/BF01952828
[73] Virlez, G.; Brüls, O.; Tromme, E.; Duysinx, P., Modeling joints with clearance and friction in multibody dynamic simulation of automotive differentials, Theor. Appl. Mech. Lett., 3, (2013) · Zbl 1311.70017 · doi:10.1063/2.1301303
[74] Wojtyra, M., Modeling of static friction in closed-loop kinematic chains—uniqueness and parametric sensitivity problems, Multibody Syst. Dyn., 39, 337-361, (2017) · Zbl 1377.70028 · doi:10.1007/s11044-016-9535-6
[75] Wu, F.; Dantan, J.Y.; Etienne, A.; Siadat, A.; Martin, P., Improved algorithm for tolerance allocation based on Monte Carlo simulation and discrete optimization, Comput. Ind. Eng., 56, 1402-1413, (2009) · doi:10.1016/j.cie.2008.09.005
[76] Yaqubi, S.; Dardel, M.; Mohammadi Daniali, H.; Hassan Ghasemi, M., Modeling and control of Crank-slider mechanism with multiple clearance joints, Multibody Syst. Dyn., 36, 143-167, (2016) · Zbl 1372.70032 · doi:10.1007/s11044-015-9486-3
[77] Zhang, C.; Luo, J.; Wang, B., Statistical tolerance synthesis using distribution function zones, Int. J. Prod. Res., 37, 3995-4006, (1999) · Zbl 0949.90602 · doi:10.1080/002075499189880
[78] Zhang, C.C.; Wang, H-P.B., Robust design of assembly and machining tolerance allocations, IIE Trans., 30, 17-29, (1997) · doi:10.1023/A:1007437427523
[79] Zhang, Z.; Xu, L.; Flores, P.; Lankarani, H.M., A Kriging model for dynamics of mechanical systems with revolute joint clearances, J. Comput. Nonlinear Dyn., 9, (2014) · doi:10.1115/1.4026233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.