×

Radiation fields. (English) Zbl 1085.35015

This paper is concerned with the question whether polyhomogeneity of initial data is preserved under evolution dictated by semilinear wave equations; and for the wave map equation, on Minkowski space-time. For such equations, local existence of solutions in weighted Sobolev spaces is established, and it is shown that polyhomogeneity is preserved under evolution when appropriate corner conditions are satisfied by the initial data, which could be more singular than allowed in the existing related results. Estimates on the time derivatives are shown to be uniform in time in a neighbourhood of the initial data that satisfy certain compatibility conditions.

MSC:

35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35L40 First-order hyperbolic systems
58J47 Propagation of singularities; initial value problems on manifolds
35L67 Shocks and singularities for hyperbolic equations
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI

References:

[1] Andersson (L.) & Chruściel (P.T.) -On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of Scri, Commun. Math. Phys., t. 161 (1994), pp. 533-568. · Zbl 0793.53084
[2] , On asymptotic behavior of solutions of the constraint equations in general relativity with “hyperboloidal boundary conditions”, Dissert. Math., t. 355 (1996), pp. 1-100. · Zbl 0873.35101
[3] Andersson (L.), Chruściel (P.T.) & Friedrich (H.) -On the reg-ularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einsteins field equations, Commun. Math. Phys., t. 149 (1992), pp. 587-612. · Zbl 0764.53027
[4] Berger (B.), Chruściel (P.T.) & Moncrief (V.) -On asymptotically flat space-times with G 2 invariant Cauchy surfaces, Annals of Phys., t. 237 (1995), pp. 322-354. · Zbl 0967.83507
[5] Bondi (H.), van der Burg (M.G.J.) & Metzner (A.W.K.) -Gravi-tational waves in general relativity VII: Waves from axi-symmetric isolated systems, Proc. Roy. Soc. London A, t. 269 (1962), pp. 21-52. · Zbl 0106.41903
[6] Bony (J.-M.) -Interaction des singularités pour leséquations aux dérivées partielles non linéaires, in Goulaouic-Meyer-Schwartz Seminar, 1981/1982,École Polytechnique, Palaiseau, 1982, Exposé II, 12. · Zbl 0498.35017
[7] Choquet-Bruhat (Y.) -Global existence theorems by the conformal method, in Recent developments in hyperbolic equations (Pisa, 1987), Long-man Sci. Tech., Harlow, 1988, pp. 16-37. · Zbl 0734.35142
[8] , Global solutions of Yang-Mills equations on anti-de Sitter space-time, Classical Quantum Gravity, t. 6 (1989), pp. 1781-1789. · Zbl 0698.53040
[9] , Global existence of wave maps, in Proceedings of the IX Inter-national Conference on Waves and Stability in Continuous Media (Bari, 1997), vol. 57, Rend. Circ. Mat. Palermo (2) Suppl., 1998, pp. 143-152. · Zbl 0933.58028
[10] Choquet-Bruhat (Y.) & Gu (Chao Hao) -Existence globale d’applications harmoniques sur l’espace-temps de Minkowski M 3 , C. R. Acad. Sci. Paris Sér. I Math., t. 308 (1989), pp. 167-170. · Zbl 0661.53043
[11] Choquet-Bruhat (Y.) & Noutchegueme (N.) -Solutions globales du système de Yang-Mills-Vlasov (masse nulle), C. R. Acad. Sci. Paris Sér. I Math., t. 311 (1990), pp. 785-788. · Zbl 0715.53046
[12] Christodoulou (D.) -Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., t. 39 (1986), pp. 267-282. · Zbl 0612.35090
[13] Christodoulou (D.) & Tahvildar-Zadeh (A. Shadi) -On the asymptotic behavior of spherically symmetric wave maps, Duke Math. J., t. 71 (1993), pp. 31-69. · Zbl 0791.58105
[14] , On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math., t. 46 (1993), pp. 1041-1091. · Zbl 0744.58071
[15] Chruściel (P.T.) & Lengard (O.) -Polyhomogeneous solutions of wave equations in the radiation regime, in Journéeséquations aux dérivées partielles, Nantes, 5-9 June 2000 (Saint Raymond (X.), Depauw (N.) & Robert (D.), eds.), http://www.math.sciences.univ-nantes.fr/edpa/ 2000, pp. II.1-III.17. · Zbl 1008.83007
[16] Chruściel (P.T.), MacCallum (M.A.H.) & Singleton (D.) -Grav-itational waves in general relativity. XIV: Bondi expansions and the “poly-homogeneity” of Scri, Phil. Trans. Roy. Soc. London A, t. 350 (1995), pp. 113-141. · Zbl 0829.53065
[17] Corvino (J.) -Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys., t. 214 (2000), pp. 137-189. · Zbl 1031.53064
[18] Corvino (J.) & Schoen (R.) -Vacuum spacetimes which are identi-cally Schwarzschild near spatial infinity, talk given at the Santa Barbara Conference on Strong Gravitational Fields, June 22-26 (1999), http: //doug-pc.itp.ucsb.edu/online/gravity_c99/schoen.
[19] Friedrich (H.) -Cauchy problem for the conformal vacuum field equa-tions in general relativity, Comm. Math. Phys., t. 91 (1983), pp. 445-472. · Zbl 0555.35116
[20] , Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant, J. Geom. Phys., t. 3 (1986), pp. 101-117. · Zbl 0592.53061
[21] , On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Comm. Math. Phys., t. 107 (1986), pp. 587-609. · Zbl 0659.53056
[22] , On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Diff. Geom., t. 34 (1991), pp. 275-345. · Zbl 0737.53070
[23] , Einstein equations and conformal structure: Existence of anti-de-Sitter-type space-times, J. Geom. and Phys., t. 17 (1995), pp. 125-184. · Zbl 0840.53055
[24] , Einstein’s equation and geometric asymptotics, in Gravitation and Relativity: At the turn of the Millennium (Dahdich (N.) & Narlikar (J.), eds.), IUCAA, Pune, 1998, Proceedings of GR15, pp. 153-176.
[25] Friedrich (H.) & Schmidt (B.G.) -Conformal geodesics in general rel-ativity, Proc. Roy. Soc. London Ser. A, t. 414 (1987), pp. 171-195. · Zbl 0629.53063
[26] Hörmander (L.) -The boundary problems of physical geodesy, Arch. Rat. Mech. Analysis, t. 62 (1976), pp. 1-52. · Zbl 0331.35020
[27] Joshi (M.S.) -A commutator proof of the propagation of polyhomogeneity for semi-linear equations, Commun. Partial Diff. Eq., t. 22 (1997), pp. 435-463. · Zbl 0876.35139
[28] Kroon (J.A.V.) -Polyhomogeneity and zero-rest-mass fields with ap-plications to Newman-Penrose constants, Class. Quantum Grav., t. 17 (2000), no. 3, pp. 605-621. · Zbl 0947.83026
[29] Lengard (O.) -Solutions of wave equations in the radiation regime, Thèse, Université de Tours, 2001. · Zbl 1008.83007
[30] Melrose (R.) & Ritter (N.) -Interaction of nonlinear progressing waves for semilinear wave equations, Ann. of Math. (2), t. 121 (1985), pp. 187-213. · Zbl 0575.35063
[31] Newman (R.P.A.C.) -The global structure of simple space-times, Comm. Math. Phys., t. 123 (1989), pp. 17-52. · Zbl 0683.53056
[32] Penrose (R.) -Zero rest-mass fields including gravitation, Proc. Roy. Soc. London, t. A284 (1965), pp. 159-203. · Zbl 0129.41202
[33] Sachs (R.) -Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time, Proc. Roy. Soc. London A, t. 270 (1962), pp. 103-126. · Zbl 0101.43605
[34] Taylor (M.E.) -Partial differential equations, Springer, New York, Berlin, Heidelberg, 1996. · Zbl 0869.35001
[35] Trautman (A.) -King’s College Lecture Notes on General Relativity, mimeographed notes; reprinted in Gen. Rel. Grav. 34 (2002), p. 721-762, May-June 1958. · Zbl 1004.83001
[36] , Radiation and boundary conditions in the theory of gravitation, Bull. Acad. Pol. Sci., Série sci. math., astr. et phys., t. VI (1958), pp. 407-412. · Zbl 0082.41201
[37] Wald (R.M.) -General relativity, University of Chicago Press, Chicago, 1984. · Zbl 0549.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.