×

Towards a robust fractional order PID stabilizer for electric power systems. (English) Zbl 1407.93098

Azar, Ahmad Taher (ed.) et al., Fractional order control and synchronization of chaotic systems. Cham: Springer. Stud. Comput. Intell. 688, 253-275 (2017).
Summary: This chapter deals with the design and application of a Robust Fractional Order PID (FOPID) power system stabilizer tuned by a Genetic Algorithm (GA). The system’s robustness is assured through the application of Kharitonov’s theorem to overcome the effect of system parameter’s changes within upper and lower pounds. The FOPID stabilizer has been simplified during the optimization using the Oustaloup’s approximation for fractional calculus and the “nipid” toolbox of Matlab during simulation. The objective is to keep robust stabilization with maximum attained degree of stability against system’s uncertainty. This optimization will be achieved with the proper choice of the FOPID stabilizer’s coefficients \((\mathrm k_{\mathrm p},\mathrm k_{\mathrm i},\mathrm k_{\mathrm d},\lambda\), and \(\delta\)) as discussed later in this chapter. The optimization has been done using the GA which limits the boundaries of the tuned parameters within the allowable domain. The calculations have been applied to a Single Machine Infinite Bus (SMIB) power system using Matlab and Simulink. The results show superior behavior of the proposed stabilizer over the traditional PID.
For the entire collection see [Zbl 1410.93005].

MSC:

93B35 Sensitivity (robustness)
90C59 Approximation methods and heuristics in mathematical programming
93D21 Adaptive or robust stabilization
34A08 Fractional ordinary differential equations
93C15 Control/observation systems governed by ordinary differential equations
93C95 Application models in control theory

Software:

Matlab; Simulink
Full Text: DOI

References:

[1] Aboelela, M. A. S., Ahmed, M. F., & Dorrah, H. T. (2012). Design of aerospace control systems using fractional PID controller. Journal of Advanced Research,3(2), 185-192. · doi:10.1016/j.jare.2011.07.004
[2] Azar, A. T., & Serrano F. E. (2015). Adaptive sliding mode control of the furuta pendulum. In: A. T. Azar & Q. Zhu (eds.), Advances and applications in sliding mode control systems, Studies in computational intelligence (Vol. 576, pp. 1-42). Berlin/Heidelberg: Springer-Verlag GmbH. · Zbl 1320.93002
[3] Barmish, B. R. (1994). New tools for robustness of linear systems. Macmillan Publisher. · Zbl 1094.93517
[4] Chen, G., & Malik, O. (1995). Tracking constrained adaptive power system stabilizer. IEE Proceedings, Generation, Transmission and Distribution,142, 149-156. · doi:10.1049/ip-gtd:19951579
[5] Chen, S., & Malik, O. P. (1995). H∞ optimization-based power system stabilizer design. IEE Proceedings, Generation, Transmission and Distribution,142, 179-184. · doi:10.1049/ip-gtd:19951711
[6] deMello, F. P., & Concordia, C. (1969). Concepts of synchronous machine stability as affected by excitation control. IEEE Transactions on Power Apparatus and Systems, PAS-88, 316-327.
[7] Dorcak, L., Petras, I., Kostial, I., & Terpak, J. (2001). State space controller design for the fractional-order regulated system. In Proceedings of the International Carpathian Control Conference (pp. 15-20).
[8] Doyle, J. C., Francis, B. A., & Tannenbaum, A. R. (1992). Feedback control theory. New York: Macmillan Press.
[9] Duc, G., & Font, S. (1999). H∞ theory and μ- analyse, tools for robustness. Paris: HERMES Science Publications. · Zbl 0949.93001
[10] El-Metwally, K. A., Elshafei, A. L., Soliman, H. M. (2006). A robust power-system stabilizer design using swarm optimization. International Journal Of Modeling, Identification and Control, 1(4).
[11] Goldberg, D. E. (1989). Algorithms in search, optimization, and machine learning. Addison-Wiley Publishing Company, Inc. · Zbl 0721.68056
[12] Goldberg, D. E. (1991). Genetic algorithms in search optimization and machine learning. Reading, MA: Addison-Wesley Publishing Company, Inc.
[13] Gosh, A., Ledwich, M. O., & Hope, G. (1989). Power system stabilizers based on adaptive control techniques. IEEE Transactions on Power Apparatus and Systems, PAS-103, 8, 1983-1989.
[14] Klein, M., Rogers, G. J., Moorty, S., & Kundur, P. (1992). Analytical investigation of factors influencing PSS performance. IEEE Transaction on EC,7(3), 382-390.
[15] Kothari, M. L., Bhattacharya, K., & Nada, J. (1996). Adaptive power system stabilizer based on pole shifting technique. IEE Proceedings, 143, Pt. C, No. 1, 96-98.
[16] Koza, J. R. (1991). Genetic evolution and co-evolution of computer programs. In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial life II: SFI studies in the sciences of complexity (Vol. 10). Addison-Wesley.
[17] Kundur, P. (1994). Power system stability and control. McGraw-Hill.
[18] Lee, S. S., & Park, J. K. (1998). Design of reduced order observer based variable structure power system stabilizer for immeasurable state variables. IEE Proceedings Conference Transmission and Distribution,145(5), 525-530. · doi:10.1049/ip-gtd:19982180
[19] MacFarlane, D. C., & Glover, K. (1992). A loop shaping design procedure using H∞ synthesis. IEEE Transactions on Automatic Control, AC-37, 759-769. · Zbl 0755.93019
[20] Malik, O. P., Chen, G., Hope, G., Qin, Y., & Xu, G. (1992). An adaptive self-optimizing pole shifting control algorithm. IEE Proceedings of D, 139, 429-438. · Zbl 0768.93028
[21] Mehran, R., Farzan, R., & Hamid, M. (2003). Tuning of power system stabilizers via genetic algorithm for stabilization of power systems. In Proceedings of the IEEE International Conference on Systems, Man & Cybernetics (pp. 649-654). Washington, D.C., USA, 5-8 October.
[22] Milos, S., & Martin, C. (2006). The fractional order PID controller outperforms the classical one. In 7th International Scientific-Technical Conference-Process Control, June 13-16, Kouty nad Desnou, Czech Republic.
[23] Mrad, F., Karaki, S., & Copti, B. (2000). An adaptive fuzzy synchronous machine stabilizer. IEEE Transactions on Systems, Man, and Cybernetics,30(1), 131-137. · doi:10.1109/5326.827486
[24] Petras, I. (1999). The fractional order controllers: Methods for their synthesis and application. Journal of Electrical Engineering,50(9), 284-288.
[25] Petras, I., Lubomir, D., & Imrich, K. (1998). Control quality enhancement by fractional order. In 2nd National Conference on Recent Trends in Information Systems (ReTIS-08) Controllers. Acta Montanistica Slovaca, 3(2), 143-148.
[26] Petras, I., & Vinagre, B. M. (2002). Practical applications of digital fractional order controller to temperature control. In Acta Montanistica, Slovaca Rocnik,2, 131-137.
[27] Podlubny, I. (1999). Fractional-order systems and PI^λD^δ controllers. IEEE Trans. on Automatic Control,44(1), 208-213. · Zbl 1056.93542 · doi:10.1109/9.739144
[28] Podlubny, I. P., Petras, I., Blas, M. V., Yang-Quan, C., O’ Leary, P., & Lubomir, D. (2003). Realization of fractional order controllers. Acta Montanistica Slovaca, 8.
[29] Podlubny, I. P., Vinagre, B. M., O’ Leary, P., & Dorcak L. (2002). Analogue realizations of fractional-order controllers. Nonlinear Dynamics, 29, 281-296. · Zbl 1041.93022
[30] Rashidi M., Rashidi F., & Monavar, H. (2003). Tuning of power system stabilizers via genetic algorithm for stabilization of power systems. In Proceedings of the IEEE International Conference on Systems, Man & Cybernetics (pp. 649-654). Washington, D.C., USA, 5-8 October.
[31] Samarasinghe, V. G., & Pahalawaththa, N. C. (1997). Damping of multimodal oscillations in power systems using variable structure control techniques. IEE Proceedings of Generation, Transmission and Distribution,144(3), 323-331. · doi:10.1049/ip-gtd:19970995
[32] Schlegel, M., & Cech, M. (2006). The fractional order PID controller outperforms the classical one. In 7th International Scientific-Technical Conference, June 13-16, Kouty nad Desnou, Czech Republic.
[33] Shamsollahi, P., & Malik O. P. (1999). Adaptive control applied to synchronous generator. IEEE Transactions on Energy Conversion, I4(4), l341-1346.
[34] Shu, H., & Chen, T. (1997). Robust digital design of power system stabilizers. In Proceedings of the American Control Conference, Albuquerque, 1953-1957.
[35] Soliman, H., Elshafei, A. L., Shaltout, A. A., & Morsi, M. F. (2000). Robust power system stabilizer. IEE Proceedings, Generation, Transmission and Distribution,147(5), 285-291. · doi:10.1049/ip-gtd:20000560
[36] Soliman, H. M., & Sakr, M. M. F. (1988). Wide-range power system pole placer. IEE Proceedings, 135, Pt. C, No. 3, 195-201.
[37] Sun, C., Zhao, Z., Sun, Y., & Lu, Q. (1996). Design of non-linear robust excitation control for multi-machine power system. IEE Proceedings, Generation, Transmission and Distribution,143, 253-257. · doi:10.1049/ip-gtd:19960349
[38] Valério, D., & Sá Da Costa, J. (2004). Ninteger: A fractional control toolbox for Mat lab. In First IFAC Workshop on Fractional Differentiation and Its Applications. Bordeaux: IFAC.
[39] Vinagre, B. M., Podlubny, I., Dorcak, L., & Feliu, V. (2000). On fractional PID controllers: A frequency domain approach. In Proceedings of IFAC Workshop on Digital Control—Past, Present and Future of PID Control (pp. 53-58).
[40] Xue, D., Chen, Y., & Atherton, D. P. (2007). Linear Feedback Control. Society for Industrial and Applied Mathematics. Philadelphia. · Zbl 1143.93002
[41] Young-Hyun, M., Heon-Su, R., Jong-Gi, L., Kyung-Bin, S., & Myong-Chul, S. (2002). Extended integral control for load frequency control with the consideration of generation-rate constraints. International Journal of Electrical Power & Energy Systems,24(4), 263-269. · doi:10.1016/S0142-0615(01)00036-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.