×

Tight approximation algorithms for geometric bin packing with skewed items. (English) Zbl 07742469

Summary: In Two-dimensional Bin Packing (2BP), we are given \(n\) rectangles as input and our goal is to find an axis-aligned nonoverlapping packing of these rectangles into the minimum number of unit square bins. 2BP admits no APTAS and the current best approximation ratio is 1.406 by Bansal and Khan (ACM-SIAM symposium on discrete algorithms (SODA), pp 13-25, 2014. doi:10.1137/1.9781611973402.2). A well-studied variant of 2BP is Guillotine Two-dimensional Bin Packing (G2BP), where rectangles must be packed in such a way that every rectangle in the packing can be obtained by applying a sequence of end-to-end axis-parallel cuts, also called guillotine cuts. Bansal et al. (Symposium on foundations of computer science (FOCS). IEEE, pp 657-666, 2005. doi:10.1109/SFCS.2005.10) gave an APTAS for G2BP. Let \(\lambda\) be the smallest constant such that for every set \(I\) of items, the number of bins in the optimal solution to G2BP for \(I\) is upper bounded by \(\lambda{{\,\text{opt}\,}}(I) + c\), where \({{\,\text{opt}\,}}(I)\) is the number of bins in the optimal solution to 2BP for \(I\) and \(c\) is a constant. It is known that \(4/3 \le \lambda \le 1.692\). Bansal and Khan (2014) conjectured that \(\lambda = 4/3\). The conjecture, if true, will imply a \((4/3+\varepsilon )\)-approximation algorithm for 2BP. Given a small constant \(\delta > 0\), a rectangle is called large if both its height and width are at least \(\delta \), else it is called skewed. We make progress towards the conjecture by showing that \(\lambda = 4/3\) when all input rectangles are skewed. We also give an APTAS for 2BP for skewed items, though general 2BP does not admit an APTAS.

MSC:

68Wxx Algorithms in computer science
05Cxx Graph theory

References:

[1] Khan, A., Sharma, E.: Tight approximation algorithms For Geometric Bin Packing with skewed items. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 207, pp. 22-12223. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). doi:10.4230/LIPIcs.APPROX/RANDOM.2021.22
[2] Hoberg, R., Rothvoss, T.: A logarithmic additive integrality gap for bin packing. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2616-2625 (2017). doi:10.1137/1.9781611974782.172 · Zbl 1423.90225
[3] De La Vega, WF; Lueker, GS, Bin packing can be solved within \(1+\varepsilon\) in linear time, Combinatorica, 1, 4, 349-355 (1981) · Zbl 0485.68057 · doi:10.1007/BF02579456
[4] Bansal, N.; Correa, JR; Kenyon, C.; Sviridenko, M., Bin packing in multiple dimensions: inapproximability results and approximation schemes, Math. Oper. Res., 31, 1, 31-49 (2006) · Zbl 1278.90324 · doi:10.1287/moor.1050.0168
[5] Chung, FR; Garey, MR; Johnson, DS, On packing two-dimensional bins, SIAM J. Algebr. Discrete Methods, 3, 1, 66-76 (1982) · Zbl 0495.05016 · doi:10.1137/0603007
[6] Caprara, A., Packing \(d\)-dimensional bins in \(d\) stages, Math. Oper. Res., 33, 203-215 (2008) · Zbl 1161.90389 · doi:10.1287/moor.1070.0289
[7] Bansal, N.; Caprara, A.; Sviridenko, M., A new approximation method for set covering problems, with applications to multidimensional bin packing, SIAM J. Comput., 39, 4, 1256-1278 (2010) · Zbl 1201.90071 · doi:10.1137/080736831
[8] Jansen, K., Prädel, L.: New approximability results for two-dimensional bin packing. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 919-936 (2013). doi:10.1007/s00453-014-9943-z · Zbl 1423.90228
[9] Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 13-25 (2014). doi:10.1137/1.9781611973402.2 · Zbl 1422.68290
[10] Chlebík, M.; Chlebíková, J., Hardness of approximation for orthogonal rectangle packing and covering problems, J. Discrete Algorithms, 7, 3, 291-305 (2009) · Zbl 1178.68282 · doi:10.1016/j.jda.2009.02.002
[11] Sweeney, PE; Paternoster, ER, Cutting and packing problems: a categorized, application-orientated research bibliography, J. Oper. Res. Soc., 43, 7, 691-706 (1992) · Zbl 0757.90055 · doi:10.1057/jors.1992.101
[12] Gilmore, PC; Gomory, RE, Multistage cutting stock problems of two and more dimensions, Oper. Res., 13, 1, 94-120 (1965) · Zbl 0128.39601 · doi:10.1287/opre.13.1.94
[13] Caprara, A.; Lodi, A.; Monaci, M., Fast approximation schemes for two-stage, two-dimensional bin packing, Math. Oper. Res., 30, 1, 150-172 (2005) · Zbl 1082.90141 · doi:10.1287/moor.1040.0112
[14] Bansal, N., Lodi, A., Sviridenko, M.: A tale of two dimensional bin packing. In: Symposium on Foundations of Computer Science (FOCS), pp. 657-666. IEEE (2005). doi:10.1109/SFCS.2005.10
[15] Coffman, EG; Garey, MR; Johnson, DS; Tarjan, RE, Performance bounds for level-oriented two-dimensional packing algorithms, SIAM J. Comput., 9, 808-826 (1980) · Zbl 0447.68079 · doi:10.1137/0209062
[16] Gálvez, W., Grandoni, F., Ameli, A.J., Jansen, K., Khan, A., Rau, M.: A tight \((3/2 + \varepsilon )\) approximation for skewed strip packing. In: International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX) (2020). doi:10.4230/LIPIcs.APPROX/RANDOM.2020.44 · Zbl 07758346
[17] Christensen, HI; Khan, A.; Pokutta, S.; Tetali, P., Approximation and online algorithms for multidimensional bin packing: a survey, Comput. Sci. Rev., 24, 63-79 (2017) · Zbl 1398.68007 · doi:10.1016/j.cosrev.2016.12.001
[18] Bansal, N., Eliáš, M., Khan, A.: Improved approximation for vector bin packing. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1561-1579. SIAM (2016). doi:10.1137/1.9781611974331.ch106 · Zbl 1414.90301
[19] Sandeep, S.: Almost optimal inapproximability of multidimensional packing problems. In: Symposium on Foundations of Computer Science (FOCS), pp. 245-256 (2022). doi:10.1109/FOCS52979.2021.00033
[20] Khan, A., Sharma, E., Sreenivas, K.V.N.: Geometry meets vectors: approximation algorithms for multidimensional packing. In: Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022), vol. 250, pp. 23:1-23:22 (2022). doi:10.4230/LIPIcs.FSTTCS.2022.23 · Zbl 07912930
[21] Khan, A., Sharma, E., Sreenivas, K.V.N.: Approximation algorithms for generalized multidimensional knapsack (2021) arXiv:2102.05854 [cs.DS]
[22] Steinberg, A., A strip-packing algorithm with absolute performance bound 2, SIAM J. Comput., 26, 2, 401-409 (1997) · Zbl 0874.68140 · doi:10.1137/S0097539793255801
[23] Harren, R., Jansen, K., Prädel, L., Van Stee, R.: A \((5/3 + \varepsilon )\)-approximation for strip packing. In: Workshop on Algorithms and Data Structures (WADS), pp. 475-487. Springer (2011). doi:10.1007/978-3-642-22300-6_40 · Zbl 1342.68357
[24] Kenyon, C., Rémila, E.: Approximate strip packing. In: Symposium on Foundations of Computer Science (FOCS), pp. 31-36 (1996). doi:10.1109/SFCS.1996.548461
[25] Jansen, K., van Stee, R.: On strip packing with rotations. In: ACM Symposium on Theory of Computing (STOC), pp. 755-761 (2005). doi:10.1145/1060590.1060702 · Zbl 1192.68908
[26] Jansen, K., Zhang, G.: On rectangle packing: maximizing benefits. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), vol. 4, pp. 204-213 (2004) · Zbl 1317.68280
[27] Gálvez, W., Grandoni, F., Heydrich, S., Ingala, S., Khan, A., Wiese, A.: Approximating geometric knapsack via L-packings. In: Symposium on Foundations of Computer Science (FOCS), pp. 260-271. IEEE (2017). doi:10.1109/FOCS.2017.32 · Zbl 07479303
[28] Gálvez, W., Grandoni, F., Khan, A., Ramirez-Romero, D., Wiese, A.: Improved approximation algorithms for 2-dimensional knapsack: packing into multiple L-shapes, spirals and more. In: International Symposium on Computational Geometry (SoCG), vol. 189, pp. 39:1-39:17 (2021). doi:10.4230/LIPIcs.SoCG.2021.39
[29] Sharma, E.: Harmonic algorithms for packing \(d\)-dimensional cuboids into bins. In: Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021), vol. 213, pp. 32:1-32:22 (2021). doi:10.4230/LIPIcs.FSTTCS.2021.32 · Zbl 07799610
[30] Seiden, SS; Woeginger, GJ, The two-dimensional cutting stock problem revisited, Math. Program., 102, 3, 519-530 (2005) · Zbl 1078.90044 · doi:10.1007/s10107-004-0548-1
[31] Khan, A., Maiti, A., Sharma, A., Wiese, A.: On guillotine separable packings for the two-dimensional geometric knapsack problem. In: International Symposium on Computational Geometry (SoCG), vol. 189, pp. 48:1-48:17 (2021). doi:10.4230/LIPIcs.SoCG.2021.48
[32] Pach, J., Tardos, G.: Cutting glass. In: International Symposium on Computational Geometry (SoCG), pp. 360-369 (2000). doi:10.1145/336154.336223 · Zbl 1375.68163
[33] Adamaszek, A., Har-Peled, S., Wiese, A.: Approximation schemes for independent set and sparse subsets of polygons. J. ACM 66(4), 29:1-29:40 (2019). doi:10.1145/3326122 · Zbl 1473.68215
[34] Khan, A., Pittu, M.R.: On guillotine separability of squares and rectangles. In: International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX) (2020). doi:10.4230/LIPIcs.APPROX/RANDOM.2020.47 · Zbl 07758349
[35] Abed, F., Chalermsook, P., Correa, J., Karrenbauer, A., Pérez-Lantero, P., Soto, J.A., Wiese, A.: On guillotine cutting sequences. In: International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pp. 1-19 (2015). doi:10.4230/LIPIcs.APPROX-RANDOM.2015.1 · Zbl 1375.68116
[36] Mitchell, J.S.B.: Approximating Maximum Independent Set for Rectangles in the Plane. In: Symposium on Foundations of Computer Science (FOCS), pp. 339-350 (2022). doi:10.1109/FOCS52979.2021.00042
[37] Gálvez, W., Khan, A., Mari, M., Mömke, T., Pittu, M.R., Wiese, A.: A 3-approximation algorithm for maximum independent set of rectangles. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 894-905 (2022). doi:10.1137/1.9781611977073.38. SIAM · Zbl 07883619
[38] Fishkin, A.V., Gerber, O., Jansen, K.: On efficient weighted rectangle packing with large resources. In: International Symposium on Algorithms and Computation (ISAAC), pp. 1039-1050. Springer (2005). doi:10.1007/11602613_103 · Zbl 1175.90329
[39] Alamdari, S., Biedl, T., Chan, T.M., Grant, E., Jampani, K.R., Keshav, S., Lubiw, A., Pathak, V.: Smart-grid electricity allocation via strip packing with slicing. In: Workshop on Algorithms and Data Structures (WADS), pp. 25-36. Springer (2013). doi:10.1007/978-3-642-40104-6_3 · Zbl 1391.90501
[40] Deppert, M.A., Jansen, K., Khan, A., Rau, M., Tutas, M.: Peak Demand Minimization via Sliced Strip Packing. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021), vol. 207, pp. 21:1-21:24 (2021). doi:10.4230/LIPIcs.APPROX/RANDOM.2021.21 · Zbl 07768366
[41] Gálvez, W., Grandoni, F., Ameli, A.J., Khodamoradi, K.: Approximation Algorithms for Demand Strip Packing. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021), vol. 207, pp. 20:1-20:24 (2021). doi:10.4230/LIPIcs.APPROX/RANDOM.2021.20 · Zbl 07768365
[42] Lau, LC; Ravi, R.; Singh, M., Iterative Methods in Combinatorial Optimization (2011), Cambridge: Cambridge University Press, Cambridge · Zbl 1247.90002 · doi:10.1017/CBO9780511977152
[43] Prädel, L.D.: Approximation algorithms for geometric packing problems. PhD thesis, Kiel University (2012). https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
[44] Vanderbei, RJ, Linear Programming: Foundations and Extensions. International Series in Operations Research & Management Science (2013), Berlin: Springer, Berlin · Zbl 1299.90243 · doi:10.1007/978-1-4614-7630-6
[45] Bland, RG, New finite pivoting rules for the simplex method, Math. Oper. Res., 2, 2, 103-107 (1977) · Zbl 0408.90050 · doi:10.1287/moor.2.2.103
[46] Johnson, D.S.: Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Technology, USA (1973)
[47] Bansal, N., Caprara, A., Jansen, K., Prädel, L., Sviridenko, M.: A structural lemma in 2-dimensional packing, and its implications on approximability. In: International Symposium on Algorithms and Computation (ISAAC), pp. 77-86. Springer (2009). doi:10.1007/978-3-642-10631-6_10 · Zbl 1272.52018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.