×

Pro-\(p\) Galois groups of function fields over local fields. (English) Zbl 0948.11045

This article describes the finitely generated pro-\(p\) groups \(G\) that can occur as absolute Galois group of an algebraic extension \(F\) of \(K(t)\) where \(t\) is one indeterminate and \(K\) is a local field different from \(\mathbb R\) and \(\mathbb C\). In other words, the quest is for the finitely generated pro-\(p\) subgroups of the absolute Galois group of \(K(t)\). One may think of \(K(t)\) as a two-dimensional object. If \(K(t)\) is replaced by a one-dimensional object, that is, a local or global field, such descriptions are available: see the earlier work of the author and also the recent book of J. Neukirch, A. Schmidt, and K. Wingberg [Cohomology of number fields. Grundlehren der Math. Wiss. 323 Berlin: Springer-Verlag (2000) in particular §X.5]. Moreover, the case \(K={\mathbb Q}_l\) with \(l\not=p\) was treated in 1996 by C. U. Jensen and A. Prestel [Manuscr. Math. 90, 225-238 (1996; Zbl 0857.12001)].
One main point of the results, and also of the proofs, is a decomposition of the groups in question as a free product (in the category of pro-\(p\)-groups) of Galois groups \(G_i\) of suitable completions \(F_i\). These \(G_i\) can be described as semidirect products of \({\mathbb Z}\) with the absolute Galois group \(\overline G_i\) of the residue class field \(\overline F_i\) of \(F_i\). The groups \(\overline G_i\) are then known, since \(\overline F_i\) is algebraic over some local or global field.
The methods mostly come from valuation theory. At one point, a Hasse principle [due mainly to F. Pop, J. Reine Angew. Math. 392, 145-175 (1988; Zbl 0671.12005)] concerning a second Galois cohomology group is used, in conjunction with the “Main Lemma” of Jensen and Prestel (loc.cit.) The idea is, roughly speaking: If a certain global-to-local map on H\(^2\) is injective, then a certain Galois group is a free product of local Galois groups.

MSC:

11S20 Galois theory
Full Text: DOI

References:

[1] DOI: 10.1515/crll.1974.268-269.41 · Zbl 0289.12103 · doi:10.1515/crll.1974.268-269.41
[2] Bourbaki N., Commutative Algebra (1972)
[3] DOI: 10.1007/PL00004310 · Zbl 0873.12003 · doi:10.1007/PL00004310
[4] DOI: 10.1006/jnth.1997.2091 · Zbl 0872.11046 · doi:10.1006/jnth.1997.2091
[5] Efrat I., manuscripta math 95 pp 237– (1998)
[6] Efrat I., J. Pure Appl. Algebra 95 (1998)
[7] Efrat I., J. Number Theory 95 (1998)
[8] Endler O., Valuation Theory (1972)
[9] DOI: 10.1007/BF01215654 · Zbl 0663.12018 · doi:10.1007/BF01215654
[10] DOI: 10.1007/BF02571520 · Zbl 0755.11014 · doi:10.1007/BF02571520
[11] DOI: 10.1007/BF02568303 · Zbl 0857.12001 · doi:10.1007/BF02568303
[12] DOI: 10.1007/BF01168612 · Zbl 0593.12018 · doi:10.1007/BF01168612
[13] Labute J.P., Bull. Soc. Math 94 pp 211– (1966)
[14] DOI: 10.4153/CJM-1967-007-8 · Zbl 0153.04202 · doi:10.4153/CJM-1967-007-8
[15] Marshall M., Queen’s Pap. Pure Appl. Math 57 (1980)
[16] Neukirch, J. 1968.Zur Verzweigungstheorie der allgemeinen Krullschen Bew- ertungen, Vol. 32, 207–215. Hamburg: Abh. Math. Sem. Univ. · Zbl 0165.35702
[17] DOI: 10.1515/crll.1988.392.145 · Zbl 0671.12005 · doi:10.1515/crll.1988.392.145
[18] DOI: 10.1007/BF01389096 · Zbl 0609.13003 · doi:10.1007/BF01389096
[19] Serre J.P., Local Fields (1979)
[20] DOI: 10.1007/BF02568005 · Zbl 0846.12007 · doi:10.1007/BF02568005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.