×

A generalization of Marshall’s equivalence relation. (English) Zbl 1156.12002

The space of orderings \(X_F\) of a formally real field \(F\) can be decomposed into Marshall’s equivalent classes. Two distinct orderings are in the same class if they are members of a 4-fan. In one of his previous papers [Commun. Algebra 21, No. 12, 4495–4511 (1993; Zbl 0799.12001)] the author associated a closure \(\hat{F}\) to any class \(C\) and proved that for some Pythagorean fields, especially for those with finitely many orderings, the partition of \(X_F\) into equivalence classes corresponds to a decomposition of \(G_F(2)\) as a free product in the category of pro-2 groups.
In the paper under review he generalizes Marshall’s equivalence relation from orderings to the case of arbitrary subgroups of the multiplicative group \(F^*\) of index \(p,\) where \(F\) is a field of characteristic \(\neq p\) and containing the \(p\)th roots of unity.
The main results are generalizations of the results of the paper mentioned above, i.e. (1) if \(\hat{F}\) is a closure at a \(p\)-equivalence class \(C\), then \(G_{\hat{F}}(p)\) cannot be written nontrivially as a free pro-\(p\) product of two closed subgroups, (2) if \(G_F(p)=G_{L_1}(p)\star_p ...\star_p G_{L_n}(p)\) for some intermediate fields \(F\subset L_1,...,L_n\subset F(p)\), then each free factor \(G_{Li}(p)\) comes from \(G_{\hat{F}}(p)\) for the closure \(\hat{F}\) at some \(p\)-equivalence class, (3) if \(\hat{F}\) is the closure at a finite \(p\)-equivalence class \(C\), then \(C\) consists of all restrictions \(F\cap \hat{T}\) to \(F\) of subgroups \(\hat{T}\) of \(\hat{F}^*\) of index \(p.\)
The final section contains a discussion of the so called elementary decomposition of \(G_F(p)\), which is a counterpart of the elementary decomposition of the finitely generated Witt ring in the theory of quadratic forms.

MSC:

12E30 Field arithmetic
12J15 Ordered fields
12J10 Valued fields
19C99 Steinberg groups and \(K_2\)
20E18 Limits, profinite groups

Citations:

Zbl 0799.12001
Full Text: DOI

References:

[1] Eberhard Becker, Euklidische Körper und euklidische Hüllen von Körpern, J. Reine Angew. Math. 268/269 (1974), 41 – 52 (German). Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II. · Zbl 0289.12103 · doi:10.1515/crll.1974.268-269.41
[2] Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. · Zbl 0279.13001
[3] Ludwig Bröcker, Characterization of fans and hereditarily Pythagorean fields, Math. Z. 151 (1976), no. 2, 149 – 163. · Zbl 0319.12102 · doi:10.1007/BF01213992
[4] Thomas C. Craven, Characterizing reduced Witt rings of fields, J. Algebra 53 (1978), no. 1, 68 – 77. · Zbl 0376.12008 · doi:10.1016/0021-8693(78)90205-3
[5] Thomas C. Craven, Characterizing reduced Witt rings. II, Pacific J. Math. 80 (1979), no. 2, 341 – 349. · Zbl 0376.12009
[6] Ido Efrat, Free product decompositions of Galois groups over Pythagorean fields, Comm. Algebra 21 (1993), no. 12, 4495 – 4511. · Zbl 0799.12001 · doi:10.1080/00927879308824813
[7] I. Efrat, Orderings, valuations and free products of Galois groups, In: Séminaire de Structures Algébriques Ordonnées, Lecture Notes No. 54, University of Paris VII, 1995.
[8] Ido Efrat, Free pro-\? product decompositions of Galois groups, Math. Z. 225 (1997), no. 2, 245 – 261. · Zbl 0873.12003 · doi:10.1007/PL00004310
[9] Ido Efrat, Pro-\? Galois groups of algebraic extensions of \?, J. Number Theory 64 (1997), no. 1, 84 – 99. · Zbl 0872.11046 · doi:10.1006/jnth.1997.2091
[10] Ido Efrat, Finitely generated pro-\? Galois groups of \?-Henselian fields, J. Pure Appl. Algebra 138 (1999), no. 3, 215 – 228. · Zbl 0937.12003 · doi:10.1016/S0022-4049(98)00033-4
[11] Ido Efrat, Finitely generated pro-\? absolute Galois groups over global fields, J. Number Theory 77 (1999), no. 1, 83 – 96. · Zbl 0953.12005 · doi:10.1006/jnth.1999.2379
[12] Ido Efrat, Pro-\? Galois groups of function fields over local fields, Comm. Algebra 28 (2000), no. 6, 2999 – 3021. · Zbl 0948.11045 · doi:10.1080/00927870008827005
[13] Ido Efrat, A Hasse principle for function fields over PAC fields, Israel J. Math. 122 (2001), 43 – 60. · Zbl 1013.12003 · doi:10.1007/BF02809890
[14] Ido Efrat, Demuškin fields with valuations, Math. Z. 243 (2003), no. 2, 333 – 353. · Zbl 1122.11079 · doi:10.1007/s00209-002-0471-1
[15] Ido Efrat and Dan Haran, On Galois groups over Pythagorean and semi-real closed fields, Israel J. Math. 85 (1994), no. 1-3, 57 – 78. · Zbl 0799.12002 · doi:10.1007/BF02758636
[16] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, Translations of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI, 1993. A constructive approach; With a foreword by I. R. Shafarevich. · Zbl 1156.11046
[17] Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. · Zbl 0625.12001
[18] Dan Haran, On closed subgroups of free products of profinite groups, Proc. London Math. Soc. (3) 55 (1987), no. 2, 266 – 298. · Zbl 0666.20015 · doi:10.1093/plms/s3-55_2.266
[19] Wolfgang Herfort and Luis Ribes, Torsion elements and centralizers in free products of profinite groups, J. Reine Angew. Math. 358 (1985), 155 – 161. · Zbl 0549.20017 · doi:10.1515/crll.1985.358.155
[20] Yoon Sung Hwang and Bill Jacob, Brauer group analogues of results relating the Witt ring to valuations and Galois theory, Canad. J. Math. 47 (1995), no. 3, 527 – 543. · Zbl 0857.12002 · doi:10.4153/CJM-1995-029-4
[21] Bill Jacob, On the structure of Pythagorean fields, J. Algebra 68 (1981), no. 2, 247 – 267. · Zbl 0457.10007 · doi:10.1016/0021-8693(81)90263-5
[22] Bill Jacob and Roger Ware, A recursive description of the maximal pro-2 Galois group via Witt rings, Math. Z. 200 (1989), no. 3, 379 – 396. · Zbl 0663.12018 · doi:10.1007/BF01215654
[23] Bill Jacob and Roger Ware, Realizing dyadic factors of elementary type Witt rings and pro-2 Galois groups, Math. Z. 208 (1991), no. 2, 193 – 208. · Zbl 0755.11014 · doi:10.1007/BF02571520
[24] Moshe Jarden, Intersections of local algebraic extensions of a Hilbertian field, Generators and relations in groups and geometries (Lucca, 1990) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 333, Kluwer Acad. Publ., Dordrecht, 1991, pp. 343 – 405. · Zbl 0737.12001 · doi:10.1007/978-94-011-3382-1_13
[25] Christian U. Jensen and Alexander Prestel, Finitely generated pro-\?-groups as Galois groups of maximal \?-extensions of function fields over \?_{\?}, Manuscripta Math. 90 (1996), no. 2, 225 – 238. · Zbl 0857.12001 · doi:10.1007/BF02568303
[26] Tsit Yuen Lam, Orderings, valuations and quadratic forms, CBMS Regional Conference Series in Mathematics, vol. 52, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. · Zbl 0962.16002
[27] Murray Marshall, Spaces of orderings. IV, Canad. J. Math. 32 (1980), no. 3, 603 – 627. · Zbl 0433.10009 · doi:10.4153/CJM-1980-047-0
[28] Murray Marshall, Abstract Witt rings, Queen’s Papers in Pure and Applied Mathematics, vol. 57, Queen’s University, Kingston, Ont., 1980. · Zbl 0451.10013
[29] Murray A. Marshall, Spaces of orderings and abstract real spectra, Lecture Notes in Mathematics, vol. 1636, Springer-Verlag, Berlin, 1996. · Zbl 0866.12001
[30] M. Marshall, The elementary type conjecture in quadratic form theory, Algebraic and arithmetic theory of quadratic forms, Contemp. Math., vol. 344, Amer. Math. Soc., Providence, RI, 2004, pp. 275 – 293. · Zbl 1143.11315 · doi:10.1090/conm/344/06224
[31] O. V. Mel\(^{\prime}\)nikov, Subgroups and the homology of free products of profinite groups, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 97 – 120 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 97 – 119.
[32] Jonathan Lee Merzel, Quadratic forms over fields with finitely many orderings, Ordered fields and real algebraic geometry (San Francisco, Calif., 1981), Contemp. Math., vol. 8, Amer. Math. Soc., Providence, R.I., 1982, pp. 185 – 229. · Zbl 0493.10025
[33] Ján Mináč, Galois groups of some 2-extensions of ordered fields, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 2, 103 – 108. Ján Mináč, Corrigendum: ”Galois groups of some 2-extensions of ordered fields”, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 4, 261.
[34] Florian Pop, Galoissche Kennzeichnung \?-adisch abgeschlossener Körper, J. Reine Angew. Math. 392 (1988), 145 – 175 (German). · Zbl 0671.12005 · doi:10.1515/crll.1988.392.145
[35] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. · Zbl 0423.12016
[36] Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. · Zbl 0902.12004
[37] Adrian R. Wadsworth, \?-Henselian field: \?-theory, Galois cohomology, and graded Witt rings, Pacific J. Math. 105 (1983), no. 2, 473 – 496. · Zbl 0506.12024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.