×

On the equivalence of pathwise mild and weak solutions for quasilinear SPDEs. (English) Zbl 1514.60074

Weak and pathwise mild solutions for parabolic quasilinear stochastic partial differential equations (SPDEs) are compared in this work. By appropriately adapting techniques from the theory of nonautonomous semilinear SPDEs to the quasilinear situation, it is ultimately demonstrated that these two solution approaches are equivalent.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
35Q35 PDEs in connection with fluid mechanics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35D30 Weak solutions to PDEs

References:

[1] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J. Theor. Biol, 79, 1, 83-99 (1979) · doi:10.1016/0022-5193(79)90258-3
[2] Zamponi, N.; Jüngel, A., Analysis of degenerate cross-diffusion population models with volume filling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34, 1, 1-29 (2017) · Zbl 1386.35167 · doi:10.1016/j.anihpc.2015.08.003
[3] Barbu, V.; Da Prato, G.; Röckner, M., Existence of strong solutions for stochastic porous media equation under general monotonicity conditions, Ann. Probab, 37, 2, 428-452 (2009) · Zbl 1162.76054 · doi:10.1214/08-AOP408
[4] Gess, B., Strong solutions for stochastic partial differential equations of gradient type, J. Funct. Anal, 263, 8, 2355-2383 (2012) · Zbl 1267.60072 · doi:10.1016/j.jfa.2012.07.001
[5] Liu, W.; Röckner, M., SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal, 259, 11, 2902-2922 (2010) · Zbl 1236.60064 · doi:10.1016/j.jfa.2010.05.012
[6] Prévôt, C.; Röckner, M., Lecture Notes Math., A Concise Course on Stochastic Partial Differential Equations (2007), Berlin: Springer, Berlin · Zbl 1123.60001
[7] Hofmanová, M.; Zhang, T., Quasilinear parabolic stochastic partial differential equations: Existence, uniqueness, Stochastic Process. Appl, 127, 10, 3354-3371 (2017) · Zbl 1372.60091 · doi:10.1016/j.spa.2017.01.010
[8] Debussche, A.; Hofmanová, M.; Vovelle, J., Degenerate parabolic stochastic partial differential equations: Quasilinear case, Ann. Probab, 44, 3, 1916-1955 (2016) · Zbl 1346.60094 · doi:10.1214/15-AOP1013
[9] Debussche, A.; de Moor, S.; Hofmanová, M., A regularity result for quasilinear stochastic partial differential equations of parabolic type, SIAM J. Math. Anal, 47, 2, 1590-1614 (2015) · Zbl 1327.60124 · doi:10.1137/130950549
[10] Fehrman, B.; Gess, B., Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise, Arch. Rational Mech. Anal, 233, 1, 249-322 (2019) · Zbl 1448.35586 · doi:10.1007/s00205-019-01357-w
[11] Gess, B.; Hofmanová, M., Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE, Ann. Probab, 46, 5, 2495-2544 (2018) · Zbl 1428.60090 · doi:10.1214/17-AOP1231
[12] Dareiotis, K.; Gerencsér, M.; Gess, B., Entropy solutions for stochastic porous media equations, J. Differ. Equ, 266, 6, 3732-3763 (2019) · Zbl 1407.35162 · doi:10.1016/j.jde.2018.09.012
[13] Dhariwal, G.; Jüngel, A.; Zamponi, N., Global martingale solutions for a stochastic population cross-diffusion system, Stoch. Process. Appl, 129, 10, 3792-3820 (2019) · Zbl 1422.35186 · doi:10.1016/j.spa.2018.11.001
[14] Dhariwal, G., Huber, F., Jüngel, A., Kuehn, C., Neamţu, A. Global martingale solutions for quasilinear SPDEs via the boundedness-by-entropy method. Ann. Inst. H. Poincaré Probab. Statist. · Zbl 1478.35173
[15] Otto, F.; Weber, H., Quasilinear SPDEs via rough paths, Arch. Rational Mech. Anal, 232, 2, 873-950 (2019) · Zbl 1426.60090 · doi:10.1007/s00205-018-01335-8
[16] Bailleul, I.; Debussche, A.; Hofmanová, M., Quasilinear generalized parabolic Anderson model equation, Stoch. Partial Differ. Equ, 7, 1, 40-63 (2019) · Zbl 1448.35320 · doi:10.1007/s40072-018-0121-1
[17] Furlan, M.; Gubinelli, M., Paracontrolled quasilinear SPDEs, Ann. Probab, 47, 2, 1096-1135 (2019) · Zbl 1447.60099 · doi:10.1214/18-AOP1280
[18] Gerencsér, M.; Hairer, M., A solution theory for quasilinear singular SPDEs, Commun. Pure Appl. Math, 72, 9, 1983-2005 (2019) · Zbl 1458.60077 · doi:10.1002/cpa.21816
[19] Pronk, M.; Veraar, M. C., A new approach to stochastic evolution equations with adapted drift, J. Differ. Equ, 256, 11, 3634-3683 (2014) · Zbl 1314.60131 · doi:10.1016/j.jde.2014.02.014
[20] Kuehn, C.; Neamţu, A., Pathwise mild solutions for quasilinear stochastic partial differential equations, J. Differ. Equ, 269, 3, 2185-2227 (2020) · Zbl 1434.60159 · doi:10.1016/j.jde.2020.01.032
[21] Mohan, M. T.; Sritharan, S. S., Stochastic quasilinear evolution equations in UMD Banach spaces, Math. Nachr, 290, 13, 1971-1990 (2017) · Zbl 1375.35390 · doi:10.1002/mana.201600015
[22] Alós, E.; León, J. A.; Nualart, D., Stochastic heat equation with random coefficients, Probab. Theory Related Fields, 115, 1, 41-94 (1999) · Zbl 0939.60065 · doi:10.1007/s004400050236
[23] Le’on, J. A.; Nualart, D., Stochastic evolution equations with random generators, Ann. Probab, 26, 1, 149-186 (1998) · Zbl 0939.60066 · doi:10.1214/aop/1022855415
[24] Russo, F.; Vallois, P., Forward, backward and symmetric stochastic integration, Probab. Theory Rel. Fields, 97, 3, 403-421 (1993) · Zbl 0792.60046 · doi:10.1007/BF01195073
[25] Pham, D.; Temam, R., Weak solutions of the Shigesada-Kawasaki-Teramoto equations and their attractors, Nonlinear Anal, 159, 339-364 (2017) · Zbl 1371.35160 · doi:10.1016/j.na.2017.01.017
[26] Yagi, A., Exponential attractors for competing species model with cross-diffusions, Discrete Contin. Dyn. Syst, 22, 4, 1091-1120 (2008) · Zbl 1171.37032 · doi:10.3934/dcds.2008.22.1091
[27] Amann, H., Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), , Vol. 133, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, 9-126 (1993), Teubner, Stuttgart: Teubner-Texte Math, Teubner, Stuttgart · Zbl 0810.35037
[28] Amann, H., Abstract Liner Theory. Monographs in Mathematics, 89, Linear and quasilinear parabolic problems (1995), Boston: Birkhäuser Boston Inc, Boston · Zbl 0819.35001
[29] Ball, J. M., Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Am. Math. Soc, 63, 2, 370-373 (1977) · Zbl 0353.47017 · doi:10.2307/2041821
[30] Da Prato, G.; Zabczyk, J., Encylcopedial of Mathematics and Its Applications, 44, Stochastic equations in infinite dimensions (1992), Cambridge University Press · Zbl 0761.60052
[31] van Neerven, J. M. A. M. (2008), ISEM
[32] Amann, H., Quasilinear evolution equations and parabolic systems, T. Am. Math. Soc, 293, 1, 191-227 (1986) · Zbl 0635.47056 · doi:10.1090/S0002-9947-1986-0814920-4
[33] Hornung, L., Quasilinear parabolic stochastic evolution equations via maximal Lp-regularity, Potential Anal, 50, 2, 279-326 (2019) · Zbl 1433.60055 · doi:10.1007/s11118-018-9683-9
[34] Giacomoni, J.; Rădulescu, V.; Warnault, G., Quasilinear parabolic problem with variable exponent: Qualitative analysis and stabilization, Commun. Contemp. Math, 20, 8, 1750065 (2018) · Zbl 1404.35240 · doi:10.1142/S0219199717500651
[35] Ouaro, S.; Touré, H., Sur un problème de type elliptique parabolique non linéaire, C. R. Math. Acad. Sci. Paris, 334, 1, 27-30 (2002) · Zbl 0998.35032 · doi:10.1016/S1631-073X(02)02198-2
[36] Carrillo, J., Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal, 147, 4, 269-361 (1999) · Zbl 0935.35056 · doi:10.1007/s002050050152
[37] Kobayasi, K., The equivalence of weak solutions and entropy solutions of nonlinear degenerate second-order equations, J. Differ. Equ, 189, 2, 383-395 (2003) · Zbl 1027.35058 · doi:10.1016/S0022-0396(02)00069-4
[38] Pronk, M.; Veraar, M. C., Forward integration, convergence and non-adapted pointwise multipliers, Infin. Dimens. Anal. Quantum Probab. Relat. Top, 18, 1, 23 (2015) · Zbl 1310.60067
[39] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), New York: Springer-Verlag, New York · Zbl 0516.47023
[40] Yagi, A., Abstract Parabolic Evolution Equations and Their Applications (2010), Berlin: Springer Monographs in Mathematics Springer-Verlag, Berlin · Zbl 1190.35004
[41] Acquistapace, P.; Terreni, B., Regularity properties of the evolution operator for abstract linear parabolic equations, Differ. Integral Equ, 5, 5, 1151-1184 (1992) · Zbl 0755.34055
[42] Acquistapace, P.; Flandoli, F.; Terreni, B., Initial-boundary value problems and optimal control for nonautonomous parabolic systems, SIAM J. Control Optim, 29, 1, 89-118 (1991) · Zbl 0753.49003 · doi:10.1137/0329005
[43] Krylov, N.V. (2008). Lectures on Elliptic and Parabolic Equations in Holder Spaces. Graduate Studies in Mathematics Series (96). AMS, UK Ed. · Zbl 1147.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.