×

On power-law fluids with the power-law index proportional to the pressure. (English) Zbl 1457.76024

Summary: In this short note we study special unsteady flows of a fluid whose viscosity depends on both the pressure and the shear rate. Here we consider an interesting dependence of the viscosity on the pressure and the shear rate; a power-law of the shear rate wherein the exponent depends on the pressure. The problem is important from the perspective of fluid dynamics in that we obtain solutions to a technologically relevant problem, and also from the point of view of mathematics as the analysis of the problem rests on the theory of spaces with variable exponents. We use the theory to prove the existence of solutions to generalizations of Stokes’ first and second problem.

MSC:

76A05 Non-Newtonian fluids
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Bridgman, P. W., The viscosity of liquids under pressure, Proc. Natl. Acad. Sci. USA, 11, 10, 603 (1925)
[2] Szeri, A. Z., Fluid Film Lubrication (1998), Cambridge University Press, Cambridge Books Online · Zbl 1001.76001
[3] Rajagopal, K. R., Remarks on the notion of “pressure”, Int. J. Non-Linear Mech., 71, 165-172 (2015)
[4] Bair, S.; Kottke, P., Pressure-viscosity relationships for elastohydrodynamics, Tribol. Trans., 46, 3, 289-295 (2003)
[5] Málek, J.; Rajagopal, K. R., Mathematical properties of the solutions to the equations govering the flow of fluid with pressure and shear rate dependent viscosities, (Handbook of Mathematical Fluid Dynamics. Handbook of Mathematical Fluid Dynamics, Handb. Differ. Equ., vol. IV (2007), Elsevier/North-Holland: Elsevier/North-Holland Amsterdam), 407-444
[6] Bulíček, M.; Majdoub, M.; Málek, J., Unsteady flows of fluids with pressure dependent viscosity in unbounded domains, Nonlinear Anal. RWA, 11, 5, 3968-3983 (2010) · Zbl 1201.35156
[7] Franta, M.; Málek, J.; Rajagopal, K. R., On steady flows of fluids with pressure- and shear-dependent viscosities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 2055, 651-670 (2005) · Zbl 1145.76311
[8] Málek, J.; Nečas, J.; Rajagopal, K. R., Global analysis of the flows of fluids with pressure-dependent viscosities, Arch. Ration. Mech. Anal., 165, 3, 243-269 (2002) · Zbl 1022.76011
[9] Bulíček, M.; Málek, J.; Rajagopal, K. R., Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56, 1, 51-85 (2007) · Zbl 1129.35055
[10] Bulíček, M.; Málek, J.; Rajagopal, K. R., Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries, SIAM J. Math. Anal., 41, 2, 665-707 (2009) · Zbl 1195.35239
[11] Bulíček, M.; Majdoub, M.; Málek, J., Unsteady flows of fluids with pressure dependent viscosity in unbounded domains, Nonlinear Anal. RWA, 11, 5, 3968-3983 (2010) · Zbl 1201.35156
[12] Davies, A. R.; Li, X. K., Numerical modeling of pressure and temperature effects in visoelastic flow between exccentrically rotating cylinders, J. Non-Newton. Fluid Mech., 54, 331-350 (1994)
[13] Schaeffer, D. G., Instability in the evolution equations describing incompressible granular flow, J. Differential Equations, 66, 1, 19-50 (1987) · Zbl 0647.35037
[14] Gwynllyw, D. Rh.; Davies, A. R.; Phillips, T. N., On the effects of a piezoviscous lubricant on the dynamics of a journal bearing, J. Rheol., 40, 6, 1239-1266 (1996) · Zbl 0852.76063
[15] Li, X. K.; Gwynllyw, D. Rh.; Davies, A. R.; Phillips, T. N., On the influence of lubricant properties on the dynamics of two-dimensional journal bearings, J. Non-Newton. Fluid Mech., 93, 29-59 (2000) · Zbl 0963.76025
[16] Růžička, M., (Electrorheological Fluids: Modeling and Mathematical Theory. Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748 (2000), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0968.76531
[17] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M., (Lebesgue and Sobolev Spaces with Variable Exponents. Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017 (2011), Springer: Springer Heidelberg) · Zbl 1222.46002
[18] Stokes, G. G., On the effect of the internal friction of fluids on the motion of pendulums, Trans. Camb. Phil. Soc., 9, 8-106 (1851)
[19] Rayleigh, L., On the motion of solid bodies through viscous liquid, Phil. Mag. Ser. 6, 21, 126, 697-711 (1911) · JFM 42.0812.01
[20] Srinivasan, S.; Rajagopal, K. R., Study of a variant of stokes’ first and second problems for fluids with pressure dependent viscosities, Internat. J. Engrg. Sci., 47, 11-12, 1357-1366 (2009) · Zbl 1213.76058
[21] Rajagopal, K. R.; Saccomandi, G.; Vergori, L., Unsteady flows of fluids with pressure dependent viscosity, J. Math. Anal. Appl., 404, 2, 362-372 (2013) · Zbl 1304.76018
[22] Barus, C., Isotherms, isopiestics and isometrics relative to viscosity, Am. J. Sci., 45, 3, 87-96 (1893)
[23] Bridgman, P. W., The effect of pressure on the viscosity of forty-three pure liquids, Proc. Amer. Acad. Arts Sci., 61, 3, 57-99 (1926)
[24] Bridgman, P. W., The viscosity of mercury under pressure, Proc. Amer. Acad. Arts Sci., 62, 7, 187-206 (1927)
[25] Průša, V.; Srinivasan, S.; Rajagopal, K. R., Role of pressure dependent viscosity in measurements with falling cylinder viscometer, Int. J. Non-Linear Mech., 47, 7, 743-750 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.