×

A Galerkin least squares approach for photoacoustic tomography. (English) Zbl 1422.65464

Summary: The development of fast and accurate image reconstruction algorithms is a central aspect of computed tomography. In this paper we address this issue for photoacoustic computed tomography in circular geometry. We investigate the Galerkin least squares method for that purpose. For approximating the function to be recovered we use subspaces of translation invariant spaces generated by a single function. This includes many systems that have previously been employed in photoacoustic tomography, such as generalized Kaiser-Bessel basis functions or the natural pixel basis. By exploiting an isometry property of the forward problem we are able to efficiently set up the Galerkin equation for a wide class of generating functions and devise efficient algorithms for its solution. We establish a convergence analysis and present numerical simulations that demonstrate the efficiency and accuracy of the derived algorithm.

MSC:

65R32 Numerical methods for inverse problems for integral equations
45Q05 Inverse problems for integral equations
92C55 Biomedical imaging and signal processing

Software:

k-Wave

References:

[1] M. Agranovsky and P. Kuchment, {\it Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed}, Inverse Problems, 23 (2007), pp. 2089-2102. · Zbl 1126.35087
[2] M. Ansorg, F. Filbir, W. R. Madych, and R. Seyfried, {\it Summability kernels for circular and spherical mean data}, Inverse Problems, 29 (2013), 015002. · Zbl 1269.44001
[3] S. R. Arridge, M. M. Betcke, B. T. Cox, F. Lucka, and B. E. Treeby, {\it On the adjoint operator in photoacoustic tomography}, Inverse Problems, 32 (2016), 115012. · Zbl 1354.35165
[4] P. Beard, {\it Biomedical photoacoustic imaging}, Interface Focus, 1 (2011), pp. 602-631.
[5] Z. Belhachmi, T. Glatz, and O. Scherzer, {\it A direct method for photoacoustic tomography with inhomogeneous sound speed}, Inverse Problems, 32 (2016), 045005. · Zbl 1382.65289
[6] T. Blu and M. Unser, {\it Approximation error for quasi-interpolators and (multi-)wavelet expansions}, Appl. Comput. Harmon. Anal., 6 (1999), pp. 219-251. · Zbl 0936.41015
[7] P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, {\it Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors}, Inverse Problems, 23 (2007), pp. S65-S80. · Zbl 1125.92035
[8] P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf, {\it Exact and approximate imaging methods for photoacoustic tomography using an arbitrary detection surface}, Phys. Rev. E (3), 75 (2007), 046706.
[9] X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, {\it Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography}, IEEE Trans. Med. Imag., 31 (2012), pp. 1922-1928.
[10] G. J. Diebold, T. Sun, and M. I. Khan, {\it Photoacoustic monopole radiation in one, two, and three dimensions}, Phys. Rev. Lett., 67 (1991), pp. 3384-3387.
[11] D. Finch, M. Haltmeier, and Rakesh, {\it Inversion of spherical means and the wave equation in even dimensions}, SIAM J. Appl. Math., 68 (2007), pp. 392-412, . · Zbl 1159.35073
[12] D. Finch, S. K. Patch, and Rakesh, {\it Determining a function from its mean values over a family of spheres}, SIAM J. Math. Anal., 35 (2004), pp. 1213-1240, . · Zbl 1073.35144
[13] R. Gordon, R. Bender, and G. T. Herman, {\it Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography}, J. Theoret. Biol., 29 (1970), pp. 471-481.
[14] M. Haltmeier, {\it A mollification approach for inverting the spherical mean Radon transform}, SIAM J. Appl. Math., 71 (2011), pp. 1637-1652, . · Zbl 1243.44003
[15] M. Haltmeier, {\it Inversion of circular means and the wave equation on convex planar domains}, Comput. Math. Appl., 65 (2013), pp. 1025-1036. · Zbl 1266.65160
[16] M. Haltmeier, {\it Universal inversion formulas for recovering a function from spherical means}, SIAM J. Math. Anal., 46 (2014), pp. 214-232, . · Zbl 1292.44003
[17] M. Haltmeier and L. V. Nguyen, {\it Analysis of iterative methods in photoacoustic tomography with variable sound speed}, SIAM J. Imaging Sci., 10 (2017), pp. 751-781, . · Zbl 1371.35347
[18] M. Haltmeier and S. Pereverzyev, Jr., {\it Recovering a function from circular means or wave data on the boundary of parabolic domains}, SIAM J. Imaging Sci., 8 (2015), pp. 592-610, . · Zbl 1315.65107
[19] M. Haltmeier and S. Pereverzyev, Jr., {\it The universal back-projection formula for spherical means and the wave equation on certain quadric hypersurfaces}, J. Math. Anal. Appl., 429 (2015), pp. 366-382. · Zbl 1325.35279
[20] M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, {\it Thermoacoustic tomography and the circular Radon transform: Exact inversion formula}, Math. Models Methods Appl. Sci., 17 (2007), pp. 635-655. · Zbl 1132.65113
[21] M. Haltmeier, T. Schuster, and O. Scherzer, {\it Filtered backprojection for thermoacoustic computed tomography in spherical geometry}, Math. Methods Appl. Sci., 28 (2005), pp. 1919-1937. · Zbl 1085.65092
[22] M. Haltmeier and G. Zangerl, {\it Spatial resolution in photoacoustic tomography: Effects of detector size and detector bandwidth}, Inverse Problems, 26 (2010), 125002. · Zbl 1206.35255
[23] G. T. Herman, {\it Basis functions in image reconstruction from projections: A tutorial introduction}, Sens. Imaging, 16 (2015), pp. 1-21.
[24] Y. Hristova, P. Kuchment, and L. Nguyen, {\it Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media}, Inverse Problems, 24 (2008), 055006. · Zbl 1180.35563
[25] A. C. Kak and M. Slaney, {\it Principles of Computerized Tomographic Imaging}, Classics Appl. Math. 33, SIAM, Philadelphia, 2001, . · Zbl 0984.92017
[26] R. Kress, {\it Linear Integral Equations}, 2nd ed., Springer-Verlag, Berlin, 1999. · Zbl 0920.45001
[27] R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, {\it Thermoacoustic molecular imaging of small animals}, Mol. Imaging, 2 (2003), pp. 113-123.
[28] P. Kuchment, {\it The Radon Transform and Medical Imaging}, CBMS-NSF Regional Conf. Ser. in Appl. Math. 85, SIAM, Philadelphia, 2014, . · Zbl 1282.92001
[29] P. Kuchment and L. Kunyansky, {\it Mathematics of photoacoustic and thermoacoustic tomography}, in Handbook of Mathematical Methods in Imaging, Springer, New York, 2011, pp. 817-865. · Zbl 1259.92065
[30] L. A. Kunyansky, {\it Explicit inversion formulae for the spherical mean Radon transform}, Inverse Problems, 23 (2007), pp. 373-383. · Zbl 1127.44003
[31] L. A. Kunyansky, {\it A series solution and a fast algorithm for the inversion of the spherical mean Radon transform}, Inverse Problems, 23 (2007), pp. S11-S20. · Zbl 1133.65107
[32] L. A. Kunyansky, {\it Inversion of the spherical means transform in corner-like domains by reduction to the classical Radon transform}, Inverse Problems, 31 (2015), 095001. · Zbl 1327.65185
[33] R. M. Lewitt, {\it Multidimensional digital image representations using generalized Kaiser-Bessel window functions}, J. Opt. Soc. Amer. A, 7 (1990), pp. 1834-1846.
[34] R. M. Lewitt, {\it Alternatives to voxels for image representation in iterative reconstruction algorithms}, Phys. Med. Biol., 37 (1992), pp. 705-716.
[35] A. K. Louis, {\it Approximate inverse for linear and some nonlinear problems}, Inverse Problems, 12 (1996), pp. 175-190. · Zbl 0851.65036
[36] A. K. Louis and P. Maass, {\it A mollifier method for linear operator equations of the first kind}, Inverse Problems, 6 (1990), pp. 427-440. · Zbl 0713.65040
[37] A. K. Louis and T. Schuster, {\it A novel filter design technique in 2D computerized tomography}, Inverse Problems, 12 (1996), pp. 685-696. · Zbl 0863.65085
[38] S. Mallat, {\it A Wavelet Tour of Signal Processing: The Sparse Way}, 3rd ed., Elsevier/Academic Press, Amsterdam, 2009. · Zbl 1170.94003
[39] S. Matej and R. M. Lewitt, {\it Practical considerations for 3-D image reconstruction using spherically symmetric volume elements}, IEEE Trans. Med. Imag., 15 (1996), pp. 68-78.
[40] F. Natterer, {\it The Mathematics of Computerized Tomography}, Classics Appl. Math. 32, SIAM, Philadelphia, 2001, . · Zbl 0973.92020
[41] F. Natterer, {\it Photo-acoustic inversion in convex domains}, Inverse Probl. Imaging, 6 (2012), pp. 315-320. · Zbl 1244.35080
[42] L. V. Nguyen, {\it A family of inversion formulas for thermoacoustic tomography}, Inverse Problems, 3 (2009), pp. 649-675. · Zbl 1183.92054
[43] L. V. Nguyen and L. A. Kunyansky, {\it A dissipative time reversal technique for photoacoustic tomography in a cavity}, SIAM J. Imaging Sci., 9 (2016), pp. 748-769, . · Zbl 1515.35354
[44] M. Nilchian, J. P. Ward, C. Vonesch, and M. Unser, {\it Optimized Kaiser-Bessel window functions for computed tomography}, IEEE Trans. Image Process., 24 (2015), pp. 3826-3833. · Zbl 1408.94511
[45] V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, {\it Looking and listening to light: The evolution of whole-body photonic imaging}, Nat. Biotechnol., 23 (2005), pp. 313-320.
[46] V. P. Palamodov, {\it A uniform reconstruction formula in integral geometry}, Inverse Problems, 28 (2012), 065014. · Zbl 1262.44001
[47] G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, {\it Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors}, Inverse Problems, 23 (2007), pp. S81-S94. · Zbl 1138.92348
[48] G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, {\it Iterative reconstruction algorithm for optoacoustic imaging}, J. Opt. Soc. Amer., 112 (2002), pp. 1536-1544.
[49] A. Rieder and T. Schuster, {\it The approximate inverse in action with an application to computerized tomography}, SIAM J. Numer. Anal., 37 (2000), pp. 1909-1929, . · Zbl 0961.65112
[50] A. Rieder and T. Schuster, {\it The approximate inverse in action III: 3D-Doppler tomography}, Numer. Math., 97 (2004), pp. 353-378. · Zbl 1071.65178
[51] H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, {\it Deblurring algorithms accounting for the finite detector size in photoacoustic tomography}, J. Biomed. Opt., 19 (2014), 056011.
[52] A. Rosenthal, V. Ntziachristos, and D. Razansky, {\it Acoustic inversion in optoacoustic tomography: A review}, Curr. Med. Imaging Rev., 9 (2013), pp. 318-336.
[53] Y. Salman, {\it An inversion formula for the spherical mean transform with data on an ellipsoid in two and three dimensions}, J. Math. Anal. Appl., 420 (2014), pp. 612-620. · Zbl 1302.44002
[54] B. E. Treeby and B. T. Cox, {\it k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave-fields}, J. Biomed. Opt., 15 (2010), 021314.
[55] K. Wang, S. A. Ermilov, R. Su, H. Brecht, A. A. Oraevsky, and M. A. Anastasio, {\it An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography}, IEEE Trans. Med. Imag., 30 (2011), pp. 203-214.
[56] K. Wang, R. W. Schoonover, R. Su, A. Oraevsky, and M. A. Anastasio, {\it Discrete imaging models for three-dimensional optoacoustic tomography using radially symmetric expansion functions}, IEEE Trans. Med. Imag., 33 (2014), pp. 1180-1193.
[57] K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, {\it Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography}, Phys. Med. Biol., 57 (2012), pp. 5399-5423.
[58] L. V. Wang and S. Hu, {\it Photoacoustic tomography: In vivo imaging from organelles to organs}, Science, 335 (2012), pp. 1458-1462.
[59] M. Xu and L. V. Wang, {\it Time-domain reconstruction for thermoacoustic tomography in a spherical geometry}, IEEE Trans. Med. Imag., 21 (2002), pp. 814-822.
[60] M. Xu and L. V. Wang, {\it Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction}, Phys. Rev. E (3), 67 (2003), 056605.
[61] M. Xu and L. V. Wang, {\it Universal back-projection algorithm for photoacoustic computed tomography}, Phys. Rev. E (3), 71 (2005), 016706.
[62] J. Zhang, M. A. Anastasio, P. J. La Rivière, and L. V. Wang, {\it Effects of different imaging models on least-squares image reconstruction accuracy in photoacoustic tomography}, IEEE Trans. Med. Imag., 28 (2009), pp. 1781-1790.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.