×

A regularized solution for the inverse conductivity problem using mollifiers. (English) Zbl 1189.65316

The authors consider the inverse problem of determining the isotropic conductivity \( \sigma \) in \( \Omega \) from applications of an electric current \( j = \sigma \frac{\partial \Phi}{\partial n} \) on the boundary \( \partial \Omega \). Here, \( \Omega \subset \mathbb{R}^n, \, n = 2 \) or \( n = 3 \), denotes a bounded, simply connected domain, and \( \Phi \) denotes the electric potential. This problem is modelled by the equation \( \nabla \cdot (\sigma(x) \nabla \Phi(x)) = 0, x \in \Omega \), and is reformulated in terms of a pair of coupled integral equations, one of them being the first kind integral equation \( (AX)(x) = \int_{\Omega} \mathcal{H}(x,y) X(y) dy = \zeta(x) \). Here, \( \mathcal{H} \) is a bounded solution of the Schrödinger equation with respect to the second variable, i.e., \( \Delta_y \mathcal{H}(x,y) + \lambda(y) \mathcal{H}(x,y) = 0, x,y \in \Omega \), and \( \zeta \) can be represented by a boundary integral. The first kind integral equation \( AX = \zeta \) is approximately solved by mollifier methods, where the kernel \( \mathcal{H} \) is chosen appropriately to ensure existence of the mollifier. Further analysis is provided for \( \lambda \) fixed and the unit disk. Finally, results of some numerical experiments are presented.

MSC:

65R32 Numerical methods for inverse problems for integral equations
45Q05 Inverse problems for integral equations
45B05 Fredholm integral equations
92C55 Biomedical imaging and signal processing
78A70 Biological applications of optics and electromagnetic theory

References:

[1] Calderón, AP. 1980.Seminar on Numerical Analysis and its Applications to Continuum Physics, 65–73. Rio de Janeiro: Soc. Brasileira de Matemàtica.
[2] DOI: 10.1002/cpa.3160380513 · Zbl 0595.35092 · doi:10.1002/cpa.3160380513
[3] DOI: 10.1002/cpa.3160410205 · Zbl 0632.35074 · doi:10.1002/cpa.3160410205
[4] Nachman AI, Ann. Math. 142 pp 71– (1995)
[5] DOI: 10.4007/annals.2006.163.265 · Zbl 1111.35004 · doi:10.4007/annals.2006.163.265
[6] DOI: 10.1088/0266-5611/14/3/011 · Zbl 0916.35132 · doi:10.1088/0266-5611/14/3/011
[7] DOI: 10.1088/0266-5611/16/4/310 · Zbl 0955.35076 · doi:10.1088/0266-5611/16/4/310
[8] DOI: 10.1007/s002110200409 · Zbl 1016.65079 · doi:10.1007/s002110200409
[9] DOI: 10.1088/0266-5611/16/3/310 · Zbl 0962.35193 · doi:10.1088/0266-5611/16/3/310
[10] DOI: 10.1137/S1064827501394568 · Zbl 1031.78008 · doi:10.1137/S1064827501394568
[11] DOI: 10.1088/0266-5611/21/4/002 · Zbl 1086.35139 · doi:10.1088/0266-5611/21/4/002
[12] DOI: 10.1016/S0375-9601(00)00399-6 · Zbl 1115.78314 · doi:10.1016/S0375-9601(00)00399-6
[13] DOI: 10.1002/zamm.200310043 · Zbl 1044.65081 · doi:10.1002/zamm.200310043
[14] DOI: 10.1016/j.physleta.2004.03.060 · Zbl 1161.45311 · doi:10.1016/j.physleta.2004.03.060
[15] DOI: 10.1088/0266-5611/18/6/201 · Zbl 1031.35147 · doi:10.1088/0266-5611/18/6/201
[16] Colton D, Inverse Acoustic and Electromagnetic Scattering Theory,, 2. ed. (1998) · Zbl 0893.35138
[17] DOI: 10.1088/0266-5611/6/3/011 · Zbl 0713.65040 · doi:10.1088/0266-5611/6/3/011
[18] DOI: 10.1088/0266-5611/12/2/005 · Zbl 0851.65036 · doi:10.1088/0266-5611/12/2/005
[19] Louis AK, Inverse und Schlecht Gestellte Probleme (1989)
[20] DOI: 10.1088/0266-5611/15/2/009 · Zbl 0933.65060 · doi:10.1088/0266-5611/15/2/009
[21] DOI: 10.1088/0266-5611/15/5/307 · Zbl 0943.35099 · doi:10.1088/0266-5611/15/5/307
[22] Lions JL, Non-homogeneous Boundary Value Problems (1972)
[23] Baiocchi C, Variational and Quasivariational Inequalities. Applications to Free Boundary Problems (1984)
[24] Backus G, Geophys. J. R. Astron. Soc. 13 pp 247– (1967)
[25] Backus G, Geophys. J. R. Astron. Soc. 16 pp 169– (1968)
[26] Protter MH, Modern Mathematical Analysis (1964)
[27] Wallacher E, Äquivalente Quellen als Zugang zur Lösung eines inverse Streuproblems (2002)
[28] Kervokian J, Texts in Applied Mathematics, 35, 2. ed. (2000)
[29] Courant R, Methods of Mathematical Physics (1989)
[30] Kress R, Applied Mathematical Sciences, 82, 2. ed. (1999)
[31] Press WH, Numerical Recipies in Fortran,, 2. ed. (1992)
[32] Engels H, Numerical Quadratures and Cubatures (1980)
[33] DOI: 10.1088/0967-3334/26/1/001 · doi:10.1088/0967-3334/26/1/001
[34] DOI: 10.1088/0266-5611/23/5/007 · Zbl 1126.35107 · doi:10.1088/0266-5611/23/5/007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.