×

Numerical implementation for reconstruction of inhomogeneous conductivities via generalized polarization tensors. (English) Zbl 1329.35348

Summary: This paper deals with numerical methods for reconstruction of inhomogeneous conductivities. We use the concept of Generalized Polarization Tensors to do reconstruction. Basic resolution and stability analysis are presented. Least-square norm methods with respect to Generalized Polarization Tensors are used for reconstruction of conductivities. Finally, reconstruction of three different types of conductivities in the plane is demonstrated.

MSC:

35R30 Inverse problems for PDEs
35C20 Asymptotic expansions of solutions to PDEs

References:

[1] AmmariH, DengY, KangH, LeeH. Reconstruction of inhomogeneous conductivities via the concept of generalized polarization tensors. Annales de l’Institut Henri Poincaré‐Non Linear Analysis2013, DOI 10.1016/j.anihpc.2013.07.008. · Zbl 1298.35247
[2] AmmariH, KangH. Properties of generalized polarization tensors. Multiscale Modeling & Simulation2003; 1:335-348. · Zbl 1060.35159
[3] AmmariH, KangH. Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, vol. 162. Springer‐Verlag: New York, 2007. · Zbl 1220.35001
[4] AmmariH, KangH, KimE, LimM. Reconstruction of closely spaced small inclusions. SIAM Journal on Numerical Analysis2005; 42:2408-2428. · Zbl 1081.35133
[5] BrühlM, HankeM, VogeliusMS. A direct impedance tomography algorithm for locating small inhomogeneities. Numerische Mathematik2003; 93(4):635-654. · Zbl 1016.65079
[6] AmmariH, KangH, LeeH, LimJ. Boundary perturbations due to the presence of small linear cracks in an elastic body. Journal of Elasticity2013; 113:75-91. · Zbl 1277.35037
[7] AmmariH, KangH. Generalized polarization tensors, inverse conductivity problems, and dilute composite materials: a review. Contemporary Mathematics2006; 408:1-67. · Zbl 1111.35101
[8] AmmariH, KangH, KimE, LeeJ. The generalized polarization tensors for resolved imaging. Part II: shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements. Mathematics of Computation2012; 81:839-860. · Zbl 1251.49053
[9] AmmariH, GarnierJ, KangH, LimM, YuS. Generalized polarization tensors for shape description. Numerische Mathematik2014; 126:199-224. · Zbl 1284.65072
[10] AmmariH, KangH. Expansion methods. In Handbook of Mathematical Mehtods of Imaging. Springer: New York, 2011; 447-499. · Zbl 1259.00009
[11] AmmariH, KangH, LimM, ZribiH. The generalized polarization tensors for resolved imaging. Part I: shape reconstruction of a conductivity inclusion. Mathematics of Computation2012; 81:367-386. · Zbl 1236.49084
[12] AmmariH, KangH, LeeH, LimM. Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: the conductivity problem. Communications in Mathematical Physics2013; 317:253-266. · Zbl 1303.35108
[13] CalderónAP. On an inverse boundary value problem, seminar on numerical analysis and its applications to continuum physics. Soc. Brasileira de Matemática, Rio de Janeiro, 1980, 65-73.
[14] AstalaK, LassasM, PäivärintaL. Calderón’s inverse problem for anisotropic conductivity in the plane. Communications in Partial Differential Equations2005; 30:207-224. · Zbl 1129.35483
[15] SylvesterJ, UhlmannG. A global uniqueness theorem for an inverse boundary value problem. Annals of Mathematics1987; 125:153-169. · Zbl 0625.35078
[16] KohnRV, VogeliusM. Determining conductivity by boundary measurements. Communications on Pure and Applied Mathematics1984; 37:289-298. · Zbl 0586.35089
[17] KohnRV, VogeliusM. Determining conductivity by boundary measurements. II. Interior results. Communications on Pure and Applied Mathematics1985; 38:643-667. · Zbl 0595.35092
[18] SunZ, UhlmannG. Generic uniqueness for an inverse boundary value problem. Duke Mathematical Journal1991; 62:131-155. · Zbl 0728.35132
[19] NachmanA. Global uniqueness for a two‐dimensional inverse boundary value problem. Annals of Mathematics1996; 143:71-96. · Zbl 0857.35135
[20] AstalaK, PäivärintaL. Calderón’s inverse conductivity problem in the plane. Annals of Mathematics2006; 163:265-299. · Zbl 1111.35004
[21] AmmariH, BoulierT, GarnierJ, KangH, WangH. Tracking of a mobile target using generalized polarization tensors. SIAM Journal on Imaging Sciences2013; 6:1477-1498. · Zbl 1282.35407
[22] ChengJ, YamamotoM. Determination of two convection coefficients from Dirichlet to Neumann map in the two‐dimensional case. SIAM Journal on Mathematical Analysis2004; 35(6):1371-1393. · Zbl 1061.35164
[23] ChengJ, LiuJ, NakamuraG. The numerical realization of the probe method for the inverse scattering problems from the near‐field data. Inverse Problems2005; 21(3):839-855. · Zbl 1071.35121
[24] KohnRV, ShenH, VogeliusMS, WeinsteinMI. Cloaking via change of variables in electric impedance tomography. Inverse Problems2008; 24:015016. · Zbl 1153.35406
[25] BarcelóT, FaracoD, RuizA. Stability of Calderón inverse conductivity problem in the plane. Journal de Mathématiques Pures et Appliquées2007; 88:522-556. · Zbl 1133.35104
[26] AlessandriniG. Stable determination of conductivity by boundary measurements. Applicable Analysis1988; 27:153-172. · Zbl 0616.35082
[27] MandacheN. Exponential instability in an inverse problem for the Schrödinger equation. Inverse Problems2001; 17:1435-1444. · Zbl 0985.35110
[28] NachmanA. Reconstructions from boundary measurements. Annals of Mathematics1988; 128:531-576. · Zbl 0675.35084
[29] SylvesterJ, UhlmannG. Inverse boundary value problems at the boundary continuous dependence. Communications on Pure and Applied Mathematics1988; 41:197-219. · Zbl 0632.35074
[30] AmmariH, BoulierT, GarnierJ, JingW, KangH, WangH. Target identification using dictionary matching of generalized polarization tensors. Foundations of Computational Mathematics2014; 14:27-62. · Zbl 1294.94006
[31] NédélecJ‐C. Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems, Applied Mathematical Sciences, vol. 144. Springer‐Verlag: New‐York, 2001. · Zbl 0981.35002
[32] AmmariH, ChungD, KangH, WangH. Invariance properties of generalized polarization tensors and design of shape descriptors in three dimensions. Applied and Computational Harmonic Analysis2014, DOI 10.1016/j.acha.2014.05.004. · Zbl 1304.35759
[33] EnglHW, HankeM, NeubauerA. Regularization of Inverse Problems. Kluwer: Dordrecht, 1996. · Zbl 0859.65054
[34] AmmariH, GarnierJ, KangH, LimM, SølnaK. Multistatic imaging of extended targets. SIAM Journal on Imaging Sciences2012; 5(2):564-600. · Zbl 1344.78023
[35] AmmariH, GarnierJ, SølnaK. Resolution and stability analysis in full‐aperture, linearized conductivity and wave imaging. Proceedings of the American Mathematical Society2013; 141:3431-3446. · Zbl 1317.35291
[36] BorceaL, PapanicolaouG, TsogkaC. Theory and applications of time reversal and interferometric imaging. Inverse Problems2003; 19:S139-S164. · Zbl 1045.94500
[37] BornM, WolfE. Principles of Optics. Cambridge University Press: Cambridge, 1999.
[38] NagayasuS, UhlmannG, WangJ‐N. Depth dependent stability estimates in electrical impedance tomography. Inverse Problems2009; 25:075001. · Zbl 1172.35514
[39] LouisAK. Approximate inverse for linear and some nonlinear problems. Inverse Problems1996; 12:175-190. · Zbl 0851.65036
[40] LouisAK. A unified approach to regularization methods for linear ill‐posed problems. Inverse Problems1999; 15:489-498. · Zbl 0933.65060
[41] MorozovVA. On the solution of functional equations by the method of regularization. Soviet mathematics - Doklady1966; 7:414-417. · Zbl 0187.12203
[42] BaoG, HouS, LiP. Recent studies on inverse medium scattering problems. Lecture Notes in Computational Science and Engineering2007; 59:165-186. · Zbl 1137.78011
[43] BorceaL, PapanicolaouG, VasquezFG. Edge illumination and imaging of extended reflectors. SIAM Journal on Imaging Sciences2008; 1:75-114. · Zbl 1132.35496
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.