×

Complexity and demographic stability in population models. (English) Zbl 1106.92058

Summary: This article is concerned with relating the stability of a population, as defined by the rate of decay of fluctuations induced by demographic stochasticity, with its heterogeneity in age-specific birth and death rates. We invoke the theory of large deviations to establish a fluctuation theorem: The demographic stability of a population is positively correlated with evolutionary entropy, a measure of the variability in the age of reproducing individuals in the population. This theorem is exploited to predict certain correlations between ecological constraints and evolutionary trends in demographic stability, namely, (i) bounded growth constraints – a uni-directional increase in stability, (ii) unbounded growth constraints (large population size) – a uni-directional decrease in stability, (iii) unbounded growth constraints (small population size) – random, non-directional change in stability.
These principles relating ecological constraints with trends in demographic stability are shown to be far reaching generalizations of the tenets derived from classical studies of stability in an evolutionary context. These results thus provide a new conceptual framework for explaining patterns of variation in population numbers observed in natural populations.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
92D15 Problems related to evolution
37N25 Dynamical systems in biology
39A99 Difference equations
82D99 Applications of statistical mechanics to specific types of physical systems
91D20 Mathematical geography and demography
Full Text: DOI

References:

[1] Arnold, L.; Demetrius, L.; Gundlach, V. M., Evolutionary formalism for products of positive random matrices, Ann. Appl. Probab., 4, 859-901 (1994) · Zbl 0818.15015
[2] Billingsley, P., Ergodic Theory and Information (1965), Wiley: Wiley New York · Zbl 0141.16702
[3] Charlesworth, B., Evolution in Age-Structured Populations (1994), Cambridge University Press: Cambridge University Press Princeton, MA · Zbl 0811.92016
[4] Coale, A. J., The Growth and Structure of Human Populations: A Mathematical Investigation (1972), Princeton University Press: Princeton University Press Princeton, MA
[5] Cohen, J., Ergodic theorems in demography, Bull. Amer. Math. Soc., 1, 2, 276-295 (1979) · Zbl 0401.60065
[6] Cramér, H., Sur un nouveau theor‘eme-limite de la théorie des probabilités, Actualités Sci. Indust., 36, 2-23 (1938) · JFM 64.0529.01
[7] Demetrius, L., Primitivity conditions for growth matrices, Math. Biosci., 12, 53-58 (1971) · Zbl 0247.15014
[8] Demetrius, L., Demographic parameters and natural selection, Proc. Natl Acad. Sci. USA, 711, 4645-4649 (1974) · Zbl 0303.62075
[9] Demetrius, L., Measures of the fitness and demographic stability, Proc. Natl Acad. Sci. USA, 74, 384-388 (1977) · Zbl 0367.92009
[10] Demetrius, L., Statistical mechanics and population biology, J. Statist. Phys., 30, 709-753 (1983) · Zbl 0588.60097
[11] Demetrius, L., Growth rate, population entropy and the dynamics of evolution, Theor. Popul. Biol., 5, 220-243 (1992)
[12] Demetrius, L., Directionality theory and the evolution of body size, Proc. Roy. Soc. Lond. B, 267, 2383-2392 (2000)
[13] Demetrius, L., Mortality plateaus and directionality theory, Proc. Roy. Soc. Lond. B, 268, 2029-2037 (2001)
[14] Demetrius, L.; Gundlach, V. M., Evolutionary dynamics in random environments, (Crauel, H.; Gundlach, V. M., Stochastic Dynamics (1999), Springer: Springer New York, Berlin), 371-394 · Zbl 0929.92026
[15] Donsker, M.; Varadhan, S. R.S., Asymptotic evaluation of certain Markov expectations for large time, part IV, Comm. Pure Appl. Math., 36, 183-212 (1983) · Zbl 0512.60068
[16] Dupuis, P.; Ellis, R., The large deviation principle for a general class of queuing systems, Trans. Amer. Math. Soc., 347, 8, 2689-2751 (1995) · Zbl 0869.60022
[17] Dupuis, P.; Ishii, H.; Soner, H. M., A viscosity solution approach to the asymptotic analysis of queuing systems, Ann. Probab., 18, 1, 226-255 (1990) · Zbl 0715.60035
[18] Ellis, R., Entropy, Large Deviations, and Statistical Mechanics (1985), Springer: Springer New York, Berlin · Zbl 0566.60097
[19] Ellis, R., An overview of the theory of large deviations, and statistical mechanics, Scand. Actuar. J., 1995, 1, 97-142 (1995) · Zbl 0838.60027
[20] Ellner, S.; Turchin, P., Chaos in a noisy worldNew methods and evidence from time series, Scand. Actuar. J., 1995, 1, 97-142 (1995)
[21] Fisher, R. A., The Genetical Theory of Natural Selection (1980), Clarendon Press: Clarendon Press Oxford · JFM 56.1106.13
[22] Keyfitz, N., 1972. Population waves. In: Greville, T.N.E. (Ed.), Population Dynamics. Academic Press, New York, pp. 1-39.; Keyfitz, N., 1972. Population waves. In: Greville, T.N.E. (Ed.), Population Dynamics. Academic Press, New York, pp. 1-39.
[23] Kim, Y. J.; Schoen, R., On the intrinsic force of convergence to stability, Math. Popul. Stud., 4, 89-102 (1993)
[24] King, C. E.; Dawson, P. S., Population biology and the Tribolium model, Evolutionary Biol., 5, 133-227 (1972)
[25] Leslie, R. H., On the use of matrices in certain population mathematics, Biometrika, 33, 183-212 (1945) · Zbl 0060.31803
[26] Liu, L.; Cohen, J., Equilibrium and local stability in a logistic matrix model for age-structured populations, J. Math. Biol., 25, 73-88 (1987) · Zbl 0619.92008
[27] MacArthur, R. H., Some generalized theorems of natural selection, Proc. Natl Acad Sci. USA, 48, 1893-1897 (1962) · Zbl 0113.14002
[28] MacArthur, R. H.; Wilson, E. O., Theory of Island Biography (1967), Princeton University Press: Princeton University Press Princeton
[29] Mueller, L. D.; Huynh, P. T., Ecological constraints of stability in model populations, Ecology, 75, 430-437 (1994)
[30] Mueller, L. D.; Joshi, A., Stability in Model Populations (2000), Princeton University Press: Princeton University Press Princeton
[31] Nicholson, A. J., The self adjustment of populations to change, Cold Spring Harbor Symp. Quant. Biol., 22, 153-173 (1957)
[32] Orey, S.; Pelikan, S., Large deviation principles for stationary processes, Ann. Probab., 16, 4, 1481-1495 (1988) · Zbl 0659.60051
[33] Ruelle, D., 1978. Thermodynamic formalism. Encyclopedia of Mathematics and its Applications, Vol. 5. Addison-Wesley, Reading, MA.; Ruelle, D., 1978. Thermodynamic formalism. Encyclopedia of Mathematics and its Applications, Vol. 5. Addison-Wesley, Reading, MA. · Zbl 0401.28016
[34] Schoen, R.; Kim, Y. J., Movement toward stability as a fundamental principle of population dynamics, Demography, 28, 455-466 (1991)
[35] Tuljapurkar, S., Why use population entropy? It determines the rate of convergence, J. Math. Biol., 13, 325-337 (1982) · Zbl 0478.92011
[36] Tuljapurkar, S., Entropy and convergence in dynamics and demography, Ecology, 73, 289-305 (1993)
[37] Turchin, P.; Taylor, A. D., Complex dynamics in ecological time series, J. Math. Biol., 31, 253-271 (1992)
[38] Varadhan, S. R.S., Large Deviations and Applications (1984), SIAM: SIAM Philadelphia · Zbl 0549.60023
[39] Waddington, C. H., Canalization of development and the inheritance of acquired characterizations, Nature, 150, 563-565 (1942)
[40] Wentzell, A.D., 1990. Limit Theorems on Large Deviations for Markov Stochastic Processes. Mathematics and Its Applications (Soviet Series), Vol. 38. Kluwer Academic Publishers, Dordrecht (Transl. from the Russian).; Wentzell, A.D., 1990. Limit Theorems on Large Deviations for Markov Stochastic Processes. Mathematics and Its Applications (Soviet Series), Vol. 38. Kluwer Academic Publishers, Dordrecht (Transl. from the Russian). · Zbl 0743.60029
[41] Young, L.-S., Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., 318, 525-543 (1990) · Zbl 0721.58030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.