×

Merits and demerits of the orbit method. (English) Zbl 0940.22013

The paper under review is an excellent survey of the orbit method in representation theory written by the father of this method. This paper is the expanded version of the author’s talk at the AMS meeting in 1997. As the author says, he explains to non-experts how to use the orbit method, discusses its strong and weak points and advertises some open problems. Not only beginners but experts too can find plenty of interesting and useful things in this paper.
The orbit method is based on that there is a connection between representations of Lie groups and orbits of their coadjoint representations. An ideal situation for this method is nilpotent Lie groups. In this case there is a one-to-one correspondence between unitary irreducible representations and coadjoint orbits, and the orbit method gives an adequate and transparent language to answer main questions of representation theory: to decompose restrictions of representations and induced representations, to determine the topological structure of the unitary dual, to write formulae for characters etc. Understood in a wider sense, the orbit method (an ideology) is the unification of harmonic analysis with symplectic geometry and can also be considered as a part of the more general idea of the unification of mathematics and physics.
The paper is very rich in ideas, examples, problems. Headings of chapters give a good idea of contents (and style) of this paper: 0. Introduction: merits versus demerits; 1. Geometry of coadjoint orbits; 2. The triumph of the orbit method: the case of solvable Lie groups; 3. The first obstacle: compact Lie groups; 4. More troubles: non-compact semisimple groups; 5. Beyond the Lie groups; 6. Explanation of why the orbit method works; 7. Byproducts, side effects and related topics; 8. Some open problems and subjects for meditation.

MSC:

22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
22-02 Research exposition (monographs, survey articles) pertaining to topological groups
20C35 Applications of group representations to physics and other areas of science
Full Text: DOI

References:

[1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523 – 615. · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[2] V. I. Arnol\(^{\prime}\)d and A. B. Givental\(^{\prime}\), Symplectic geometry, Current problems in mathematics. Fundamental directions, Vol. 4, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 5 – 139, 291 (Russian).
[3] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255 – 354. · Zbl 0233.22005 · doi:10.1007/BF01389744
[4] A. Alekseev and S. Shatashvili, Path integral quantization of the coadjoint orbits of the Virasoro group and 2-d gravity, Nuclear Phys. B 323 (1989), no. 3, 719 – 733. · doi:10.1016/0550-3213(89)90130-2
[5] Ian D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. (4) 6 (1973), 407 – 411. · Zbl 0284.57026
[6] Bargmann V., Irreducible unitary representations of the Lorentz group, Ann. of Math. 48 (1947), 568-640. · Zbl 0045.38801
[7] Busyatskaya I.K., Representations of exponential Lie groups, Funct. Anal. and Appl. 7, No 2 (1973), 151-152. · Zbl 0286.22013
[8] P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, and M. Vergne, Représentations des groupes de Lie résolubles, Dunod, Paris, 1972. Monographies de la Société Mathématique de France, No. 4. · Zbl 0248.22012
[9] Ranee Brylinski and Bertram Kostant, Minimal representations, geometric quantization, and unitarity, Proc. Nat. Acad. Sci. U.S.A. 91 (1994), no. 13, 6026 – 6029. · Zbl 0803.58023 · doi:10.1073/pnas.91.13.6026
[10] Jacques Dixmier, Sur les représentations unitaries des groupes de Lie nilpotents. III, Canad. J. Math. 10 (1958), 321 – 348. · Zbl 0100.32401 · doi:10.4153/CJM-1958-033-5
[11] Универсал\(^{\приме}\)ные обертывающие алгебры., Издат. ”Мир”, Мосцощ, 1978 (Руссиан). Транслатед фром тхе Френч бы Ју. А. Бахтурин; Едитед бы Д. П. Žелобенко.
[12] Robert L. Devaney, An introduction to chaotic dynamical systems, 2nd ed., Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. · Zbl 0695.58002
[13] M. Djuflo, Representations of the fundamental series of a semisimple Lie group, Funkcional. Anal. i Priložen. 4 (1970), no. 2, 38 – 42 (Russian).
[14] Michel Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 265 – 288 (French, with English summary). · Zbl 0353.22009
[15] Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), no. 3-4, 153 – 213 (French). · Zbl 0529.22011 · doi:10.1007/BF02392353
[16] J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), no. 2, 259 – 268. , https://doi.org/10.1007/BF01399506 J. J. Duistermaat and G. J. Heckman, Addendum to: ”On the variation in the cohomology of the symplectic form of the reduced phase space”, Invent. Math. 72 (1983), no. 1, 153 – 158. · Zbl 0503.58016 · doi:10.1007/BF01389132
[17] B. A. Dubrovin, Igor Moiseevich Krichever, and S. P. Novikov, Integrable systems. I, Current problems in mathematics. Fundamental directions, Vol. 4, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 179 – 284, 291 (Russian).
[18] Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov Jr., Spherical functions on affine Lie groups, Duke Math. J. 80 (1995), no. 1, 59 – 90. · Zbl 0848.43010 · doi:10.1215/S0012-7094-95-08003-X
[19] A. A. Kirillov Jr. and P. I. Ètingof, On a unified representation-theoretic approach to the theory of special functions, Funktsional. Anal. i Prilozhen. 28 (1994), no. 1, 91 – 94 (Russian); English transl., Funct. Anal. Appl. 28 (1994), no. 1, 73 – 76. · Zbl 0868.33010 · doi:10.1007/BF01079011
[20] J. M. G. Fell, Weak containment and induced representations of groups, Canad. J. Math. 14 (1962), 237 – 268. · Zbl 0138.07301 · doi:10.4153/CJM-1962-016-6
[21] I. B. Frenkel, Orbital theory for affine Lie algebras, Invent. Math. 77 (1984), no. 2, 301 – 352. · Zbl 0548.17007 · doi:10.1007/BF01388449
[22] V. V. Fock and A. A. Rosly, Flat connections and polyubles, Teoret. Mat. Fiz. 95 (1993), no. 2, 228 – 238 (English, with English and Russian summaries); English transl., Theoret. and Math. Phys. 95 (1993), no. 2, 526 – 534. · Zbl 0849.58030 · doi:10.1007/BF01017138
[23] Izrail M. Gelfand, Collected papers. Vol. I, Springer-Verlag, Berlin, 1987. With remarks by V. W. Guillemin and S. Sternberg. Izrail M. Gelfand, Collected papers. Vol. II, Springer-Verlag, Berlin, 1988. Edited by S. G. Gindikin, V. W. Guillemin, A. A. Kirillov, B. Kostant and S. Sternberg; With a foreword by Kirillov; With contributions by G. Segal and C. M. Ringel.
[24] V. A. Ginzburg, The orbit method in the theory of representations of complex Lie groups, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 23 – 37, 96 (Russian). · Zbl 0457.22004
[25] Victor Guillemin, Eugene Lerman, and Shlomo Sternberg, Symplectic fibrations and multiplicity diagrams, Cambridge University Press, Cambridge, 1996. · Zbl 0870.58023
[26] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515 – 538. , https://doi.org/10.1007/BF01398934 Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984. Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990. · Zbl 0503.58018
[27] G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333 – 356. · Zbl 0497.22006 · doi:10.1007/BF01393821
[28] Roger Howe, On Frobenius reciprocity for unipotent algebraic groups over \?, Amer. J. Math. 93 (1971), 163 – 172. · Zbl 0215.11803 · doi:10.2307/2373455
[29] Roger Howe, Reciprocity laws in the theory of dual pairs, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 159 – 175.
[30] I. M. Isaacs and Dikran Karagueuzian, Erratum: ”Conjugacy in groups of upper triangular matrices” [J. Algebra 202 (1998), no. 2, 704 – 711; MR1617655 (99b:20011)], J. Algebra 208 (1998), no. 2, 722. · Zbl 0907.20031 · doi:10.1006/jabr.1998.7430
[31] R. S. Ismagilov, Representations of infinite-dimensional groups, Translations of Mathematical Monographs, vol. 152, American Mathematical Society, Providence, RI, 1996. Translated from the Russian manuscript by D. Deart. · Zbl 0856.22001
[32] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57 – 110 (Russian). · Zbl 0090.09802
[33] A. A. Kirillov, Elements of the theory of representations, Springer-Verlag, Berlin-New York, 1976. Translated from the Russian by Edwin Hewitt; Grundlehren der Mathematischen Wissenschaften, Band 220. · Zbl 0342.22001
[34] Kirillov A.A., Introduction to the theory of representations and noncommutative harmonic analysis, Encyclopaedia of Mathematical Sciences, vol. 22 Representation theory and noncommutative harmonic analysis I, Springer, 1994, pp. 1-156. CMP 95:06
[35] Aleksandr Aleksandrovich Kirillov, The orbit method. II. Infinite-dimensional Lie groups and Lie algebras, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 33 – 63. · Zbl 0935.22016 · doi:10.1090/conm/145/1216180
[36] A. A. Kirillov, Geometric quantization, Current problems in mathematics. Fundamental directions, Vol. 4, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 141 – 178, 291 (Russian). · Zbl 0780.58024
[37] A. A. Kirillov, Variations on the triangular theme, Lie groups and Lie algebras: E. B. Dynkin’s Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 169, Amer. Math. Soc., Providence, RI, 1995, pp. 43 – 73. · Zbl 0840.22015 · doi:10.1090/trans2/169/05
[38] A. A. Kirillov, Characters of unitary representations of Lie groups, Funkcional. Anal. i Priložen 2 (1968), no. 2, 40 – 55 (Russian). · Zbl 0174.45001
[39] A. A. Kirillov, Geometric approach to discrete series of unirreps for Vir, J. Math. Pures Appl. (9) 77 (1998), no. 8, 735 – 746 (English, with English and French summaries). · Zbl 0922.58078 · doi:10.1016/S0021-7824(98)80007-X
[40] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. · Zbl 0716.17022
[41] B. Kostant, Quantization and unitary representations, Uspehi Mat. Nauk 28 (1973), no. 1(169), 163 – 225 (Russian). Translated from the English (Lectures in Modern Analysis and Applications, III, pp. 87 – 208, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970) by A. A. Kirillov. Bertram Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975) Springer, Berlin, 1977, pp. 177 – 306. Lecture Notes in Math., Vol. 570.
[42] Bertram Kostant, On the existence and irreducibility of certain series of representations, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 231 – 329.
[43] Bertram Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math. 34 (1979), no. 3, 195 – 338. · Zbl 0433.22008 · doi:10.1016/0001-8708(79)90057-4
[44] A. A. Kirillov and M. L. Kontsevich, The growth of the Lie algebra generated by two generic vector fields on the line, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1983), 15 – 20 (Russian, with English summary). · Zbl 0518.17006
[45] A. A. Kirillov, M. L. Kontsevich, and A. I. Molev, Algebras of intermediate growth, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint 39 (1983), 19 (Russian, with English summary). Translated in Selecta Math. Soviet. 9 (1990), no. 2, 137 – 153. · Zbl 0705.17013
[46] Kirillov A.A. and Melnikov A., On a remarkable sequence of polynomials, Proceedings of the Franco-Belge Colloquium, Reims 1995, Collection S.M.F., 1997, pp. 35-42. CMP 98:07 · Zbl 0883.15009
[47] Maxim Kontsevich, Formality conjecture, Deformation theory and symplectic geometry (Ascona, 1996) Math. Phys. Stud., vol. 20, Kluwer Acad. Publ., Dordrecht, 1997, pp. 139 – 156. · Zbl 1149.53325
[48] Masaki Kashiwara and Michèle Vergne, The Campbell-Hausdorff formula and invariant hyperfunctions, Invent. Math. 47 (1978), no. 3, 249 – 272. · Zbl 0404.22012 · doi:10.1007/BF01579213
[50] Horst Leptin and Jean Ludwig, Unitary representation theory of exponential Lie groups, De Gruyter Expositions in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. · Zbl 0833.22012
[51] Jiang-Hua Lu and Alan Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), no. 2, 501 – 526. · Zbl 0673.58018
[52] Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146 – 182. · Zbl 0139.30702 · doi:10.2307/1970567
[53] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Mathematical Society Monographs. New Series, vol. 16, The Clarendon Press, Oxford University Press, New York, 1996. Translated from the Russian by G. G. Gould; Oxford Science Publications. · Zbl 0858.22001
[54] Lajos Pukánszky, On the theory of exponential groups, Trans. Amer. Math. Soc. 126 (1967), 487 – 507. · Zbl 0207.33605
[55] L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. ��cole Norm. Sup. (4) 4 (1971), 457 – 608. · Zbl 0238.22010
[56] Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. · Zbl 0618.22011
[57] Wulf Rossmann, Kirillov’s character formula for reductive Lie groups, Invent. Math. 48 (1978), no. 3, 207 – 220. · Zbl 0372.22011 · doi:10.1007/BF01390244
[58] S. P. Novikov , Dynamical systems. VII, Encyclopaedia of Mathematical Sciences, vol. 16, Springer-Verlag, Berlin, 1994. Integrable systems, nonholonomic dynamical systems; A translation of Current problems in mathematics. Fundamental directions, Vol. 16 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987 [ MR0922069 (88g:58004)]; Translation by A. G. Reyman [A. G. Reĭman] and M. A. Semenov-Tian-Shansky [M. A. Semenov-Tyan-Shanskiĭ]; Translation edited by V. I. Arnol\(^{\prime}\)d and S. P. Novikov.
[59] J.-M. Souriau, Structure des systèmes dynamiques, Maîtrises de mathématiques, Dunod, Paris, 1970 (French). · Zbl 0186.58001
[60] I. M. Ščepočkina, Orbit method in restriction and induction problems for a normal subgroup of a solvable Lie group, C. R. Acad. Bulgare Sci. 33 (1980), no. 8, 1039 – 1042 (Russian). · Zbl 0536.22015
[61] Yan Soibelman, Orbit method for the algebras of functions on quantum groups and coherent states. I, Internat. Math. Res. Notices 6 (1993), 151 – 163. · Zbl 0798.17009 · doi:10.1155/S1073792893000169
[62] David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315 – 388. David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987.
[63] Edward Witten, Nonabelian bosonization in two dimensions, Comm. Math. Phys. 92 (1984), no. 4, 455 – 472. Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351 – 399. · Zbl 0536.58012
[64] Edward Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), no. 1, 153 – 209. · Zbl 0762.53063
[65] N. J. Wildberger, On a relationship between adjoint orbits and conjugacy classes of a Lie group, Canad. Math. Bull. 33 (1990), no. 3, 297 – 304. , https://doi.org/10.4153/CMB-1990-048-4 A. Kh. Duli and N. Dzh. Vildberger, Harmonic analysis and global exponential mapping for compact Lie groups, Funktsional. Anal. i Prilozhen. 27 (1993), no. 1, 25 – 32 (Russian); English transl., Funct. Anal. Appl. 27 (1993), no. 1, 21 – 27. · doi:10.1007/BF01768664
[66] Andrey V. Zelevinsky, Representations of finite classical groups, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin-New York, 1981. A Hopf algebra approach. · Zbl 0465.20009
[67] Don Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 497 – 512. · Zbl 0822.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.