×

On an inner product in modular tensor categories. (English) Zbl 0861.05065

The paper is organized as follows. In Section 1 we recall basic facts about modular tensor categories (MTC), in particular, the action of modular group and various symmetries of this action. In Section 2 we define an inner product on the space of intertwiners in modular tensor categories with some additional properties (Hermitian MTC’s), and prove that the action of modular group is unitary with respect to this linear product.
In Section 3 we recall, following H. H. Andersen [Commun. Math. Phys. 149, No. 1, 149-159 (1992; Zbl 0760.17004)], the construction of MTC from representations of quantum groups of roots of unity. In Section 4 we show that this category can be endowed with a natural Hermitian structure.
Section 5 is devoted to a special case of the constructions above; namely, we let \({\mathfrak g}={\mathfrak s}{\mathfrak l}_n\) and take \(U\) to be a symmetric power of fundamental representation. We show that in this case the \(S\)-matrix can be written in terms of values of Macdonald’s polynomials of type \(A_{n-1}\) at roots of unity, which gives many identities for these special values. These expressions coincide with Cherednik’s formulas for difference Fourier transform.
Sections 6 and 7 are devoted to further study of MTC’s coming from quantum groups at roots of unity. In particular, we describe the Grothendieck ring of these categories (which is not new); we also give another description of the Hermitian structure on them.
In subsequent papers we will apply the same construction to the modular tensor category arising from the affine Lie algebras.

MSC:

05E35 Orthogonal polynomials (combinatorics) (MSC2000)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
57M99 General low-dimensional topology

Citations:

Zbl 0760.17004

References:

[1] Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149 – 159. · Zbl 0760.17004
[2] R. Askey and Mourad E. H. Ismail, A generalization of ultraspherical polynomials, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 55 – 78. · Zbl 0532.33006
[3] Andersen, H. H. and Paradowski, J., Fusion categories arising from semisimple Lie algebras, Com. Math. Phys 169 (1995), 563–588. CMP 95:11 · Zbl 0827.17010
[4] Cherednik, I., Macdonald’s evaluation conjectures and difference Fourier transform, preprint, May 1995, q-alg/9412016. CMP 96:02 · Zbl 0854.22021
[5] V. G. Drinfel\(^{\prime}\)d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798 – 820.
[6] V. G. Drinfel\(^{\prime}\)d, Almost cocommutative Hopf algebras, Algebra i Analiz 1 (1989), no. 2, 30 – 46 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 2, 321 – 342.
[7] A. A. Kirillov Jr. and P. I. Ètingof, On a unified representation-theoretic approach to the theory of special functions, Funktsional. Anal. i Prilozhen. 28 (1994), no. 1, 91 – 94 (Russian); English transl., Funct. Anal. Appl. 28 (1994), no. 1, 73 – 76. · Zbl 0868.33010 · doi:10.1007/BF01079011
[8] ——, Macdonald’s polynomials and representations of quantum groups, Math. Res. Let. 1 (1994), 279–296. CMP 95:04
[9] ——, Representation-theoretic proof of inner product and symmetry identities for Macdonald’s polynomials, hep-th/9410169, to appear in Comp. Math. (1995).
[10] Finkelberg, M., Fusion categories, Ph.D thesis, Harvard Univ. (1993), (to appear in GAFA). · Zbl 0860.17040
[11] Sergei Gelfand and David Kazhdan, Examples of tensor categories, Invent. Math. 109 (1992), no. 3, 595 – 617. · Zbl 0784.18003 · doi:10.1007/BF01232042
[12] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. · Zbl 0716.17022
[13] Kassel, C., Quantum groups, Springer, New York, 1995. CMP 95:09 · Zbl 0808.17003
[14] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905 – 947, 949 – 1011. · Zbl 0786.17017
[15] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905 – 947, 949 – 1011. · Zbl 0786.17017
[16] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), no. 2, 335 – 381. · Zbl 0802.17007
[17] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc. 7 (1994), no. 2, 383 – 453. · Zbl 0802.17008
[18] Kerler, T., Mapping class group actions on quantum doubles, Comm. Math. Phys. 168 (1995), 353–388. CMP 95:10 · Zbl 0833.16039
[19] A. N. Kirillov and N. Reshetikhin, \?-Weyl group and a multiplicative formula for universal \?-matrices, Comm. Math. Phys. 134 (1990), no. 2, 421 – 431. · Zbl 0723.17014
[20] G. Lusztig, Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 59 – 77. · doi:10.1090/conm/082/982278
[21] George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257 – 296. · Zbl 0695.16006
[22] George Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89 – 113. · Zbl 0714.17013 · doi:10.1007/BF00147341
[23] George Lusztig, On quantum groups, J. Algebra 131 (1990), no. 2, 466 – 475. · Zbl 0698.16007 · doi:10.1016/0021-8693(90)90187-S
[24] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0788.17010
[25] George Lusztig, Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London Ser. A 445 (1994), no. 1923, 231 – 246. · Zbl 0829.17018 · doi:10.1098/rspa.1994.0058
[26] G. Lusztig, Canonical bases arising from quantized enveloping algebras. II, Progr. Theoret. Phys. Suppl. 102 (1990), 175 – 201 (1991). Common trends in mathematics and quantum field theories (Kyoto, 1990). · Zbl 0776.17012 · doi:10.1143/PTPS.102.175
[27] S. Z. Levendorskiĭ and Ya. S. Soĭbel\(^{\prime}\)man, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), no. 2, 241 – 254. · Zbl 0729.17009 · doi:10.1016/0393-0440(90)90013-S
[28] Lyubashenko, V., Modular transformations for tensor categories, J. Pure Appl. Algebra 98 (1995), 279–327. CMP 95:10 · Zbl 0823.18003
[29] Macdonald, I.G., A new class of symmetric functions, Publ. I.R.M.A. Strasbourg, 372/S-20, Actes 20 Séminaire Lotharingien (1988), 131-171.
[30] ——, Orthogonal polynomials associated with root systems, preprint (1988).
[31] Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. · Zbl 0705.18001
[32] Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177 – 254. · Zbl 0694.53074
[33] Gregory Moore and Nathan Seiberg, Lectures on RCFT, Superstrings ’89 (Trieste, 1989) World Sci. Publ., River Edge, NJ, 1990, pp. 1 – 129. Gregory Moore and Nathan Seiberg, Lectures on RCFT, Physics, geometry, and topology (Banff, AB, 1989) NATO Adv. Sci. Inst. Ser. B Phys., vol. 238, Plenum, New York, 1990, pp. 263 – 361.
[34] Gregory Moore and Nathan Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett. B 212 (1988), no. 4, 451 – 460. · doi:10.1016/0370-2693(88)91796-0
[35] Gregory Moore and Nathan Seiberg, Naturality in conformal field theory, Nuclear Phys. B 313 (1989), no. 1, 16 – 40. · Zbl 0694.53074 · doi:10.1016/0550-3213(89)90511-7
[36] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1 – 26. · Zbl 0768.57003
[37] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547 – 597. · Zbl 0725.57007 · doi:10.1007/BF01239527
[38] V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. · Zbl 0812.57003
[39] Cumrun Vafa, Toward classification of conformal theories, Phys. Lett. B 206 (1988), no. 3, 421 – 426. · doi:10.1016/0370-2693(88)91603-6
[40] Hans Wenzl, Quantum groups and subfactors of type \?, \?, and \?, Comm. Math. Phys. 133 (1990), no. 2, 383 – 432. · Zbl 0744.17021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.