×

Algebraic integrability of Schrödinger operators and representations of Lie algebras. (English) Zbl 0861.17003

A Schrödinger operator in \(m\) variables is said to be integrable if it has \(m\) algebraically independent quantum integrals which are commuting with each other. One of the most interesting integrable Schrödinger operators is the Calogero-Sutherland operator. An integrable Schrödinger operator is said to be algebraically integrable if the algebra of its quantum integrals cannot be generated by \(m\) operators. Calogero-Sutherland operators become algebraically integrable when the parameter takes special values. The authors study the algebraic integrability of certain matrix Schrödinger operators. To every complex simple Lie algebra \({\mathfrak g}\) and certain \({\mathfrak g}\)-module \(U\), a matrix Schrödinger operator is associated which is proved to be integrable [P. Etingof, J. Math. Phys. 36, No. 6, 2636-2651 (1995; reviewed above)].
The main result of this paper is that it is also algebraically integrable in the rational and trigonometric case if the \({\mathfrak g}\)-module \(U\) has highest weight. It is naturally conjectured to be true as well for the case of elliptic potential.
Reviewer: H.Yamada (Sapporo)

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q58 Other completely integrable PDE (MSC2000)

Citations:

Zbl 0861.17002

References:

[1] Calogero, F. : Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potentials , J. Math. Phys. 12 (1971), 419-436. · Zbl 1002.70558 · doi:10.1063/1.531804
[2] Cherednik, I. : Elliptic quantum many-body problem and double affine Knizhnik-Zamolodchikov equation , preprint; Submitted to Comm. Math. Phys. (1994). · Zbl 0826.35100 · doi:10.1007/BF02099480
[3] Chalykh, O.A. and Veselov, A.P. : Integrability in the theory of Schrödinger operator and harmonic analysis , Comm. Math. Phys. 152 (1993), 29-40. · Zbl 0767.35066 · doi:10.1007/BF02097056
[4] Chalykh, O.A. and Veselov, A.P. : Commutative rings of partial differential operators and Lie algebras , Comm. Math. Phys. 126 (1990), 597-611. · Zbl 0746.47025 · doi:10.1007/BF02125702
[5] Etingof, P.I. : Quantum integrable systems and representations of Lie algebras, hep-th 9311132 , Journal of Mathematical Physics (1993), to appear. · Zbl 0861.17002 · doi:10.1063/1.531056
[6] Etingof, P.I. and Kirillov Jr., A.A. : Representations of affine Lie algebras, parabolic differential equations, and Lamé functions, hep-th 9310083 , Duke Math. J., vol. 74(3), 1994, pages 585-614. · Zbl 0811.17026 · doi:10.1215/S0012-7094-94-07421-8
[7] Etingof, P.I. and Kirillov,, Jr. A.A. : A unified representation-theoretic approach to special functions, hep-th 9312101 , Functional Anal. and its Applic. 28 (1994), no. 1. · Zbl 0868.33010 · doi:10.1007/BF01079011
[8] Grinevich, P.G. : Commuting matrix differential operators of arbitrary rank , Soviet Math. Dokl. 30 (1984), no. 2, 515-518. · Zbl 0598.47049
[9] Heckman, G.J. and Opdam, E.M. : Root systems and hypergeometric functions I , Compos. Math. 64 (1987), 329-352. · Zbl 0656.17006
[10] Heckman, G.J. : Root systems and hypergeometric functions II , Compos. Math. 64 (1987), 353-373. · Zbl 0656.17007
[11] Kac, V.G. and Kazhdan, D.A. : Structure of representations with highest weight of infinite dimensional Lie algebras , Advances in Math. 34 (1979), no. 1, 97-108. · Zbl 0427.17011 · doi:10.1016/0001-8708(79)90066-5
[12] Krichever, I.M. : Methods of algebraic geometry in the theory of non-linear equations , Russian Math. Surv. 32:6 (1977), 185-213. · Zbl 0386.35002 · doi:10.1070/RM1977v032n06ABEH003862
[13] Opdam, E.M. : Root systems and hypergeometric functions III , Compos. Math. 67 (1988), 21-49. · Zbl 0669.33007
[14] Opdam, E.M. : Root systems and hypergeometric functions IV , Compos. Math. 67 (1988), 191-207. · Zbl 0669.33008
[15] Ochiai, H. , Oshima, T. and Sekiguchi, H. : Commuting families of symmetric differential operators , (preprint), Univ. of Tokyo (1994). · Zbl 0817.22010 · doi:10.3792/pjaa.70.62
[16] Olshanetsky, M.A. and Perelomov, A.M. : Quantum integrable systems related to Lie algebras , Phys. Rep. 94 (1983), 313-404. · Zbl 0366.58005 · doi:10.1007/BF00420664
[17] Oshima, T. : Completely integrable systems with a symmetry in coordinates , (preprint), Univ. of Tokyo (1994). · Zbl 0965.37055 · doi:10.4310/AJM.1998.v2.n4.a13
[18] Oshima, T. and Sekiguchi, H. : Commuting families of differential operators invariant under the action of the Weyl group , (preprint) UTMS 93-43, Dept. of Math. Sci., Univ. of Tokyo (1993). · Zbl 0863.43007
[19] Sutherland, B. : Exact results for a quantum many-body problem in one dimension , Phys. Rev. A5 (1972), 1372-1376.
[20] Shapovalov, N.N. : On bilinear form on the universal enveloping algebra of a simple Lie algebra , Funct. Anal. Appl. 6 (1972), 307-312. · Zbl 0283.17001 · doi:10.1007/BF01077650
[21] Veselov, A.P. , Styrkas, K.A. and Chalykh, O.A. : Algebraic integrability for the Schrödinger equation and finite reflection groups , Theor. and Math. Physics 94 (1993), no. 2. · Zbl 0805.47070 · doi:10.1007/BF01019330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.