×

Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces. (English) Zbl 1360.14079

Let \(K\) be a number field, \(X/K\) be a smooth projective geometrically irreducible curve of genus \(> 1\), and let \(\mathcal X\) be a proper regular model of \(X\) over the ring of integers of \(K\). Given a \(\mathbb Q\)-divisor \(D\) of degree one on \(X\), the authors locally construct vertical \(\mathbb Q\)-divisors \(V_D\) and \(U_D\) associated to \(D\), from which they construct an associated hermitian line bundle \(\overline{\mathcal L_D}\). Theorem 1.1 compares the height with respect to \(\overline{\mathcal L_D}\) with the Néron-Tate height on the Jacobian after embedding via \(D\) (Theorem 1.1). This implies a positivity result for \(\overline{\mathcal L_D}^2\) when \(\overline{\mathcal L_D}\) is relatively semipositive (Proposition 1.2). Proposition 1.2 then implies an explicit lower bound for the self-intersection number of the relative dualizing sheaf \(\overline \omega\) on \(\mathcal X\) (Theorem 1.3). This enables them to recover a result from the admissible intersection theory that when \(\mathcal X\) is semistable and minimal and has at least one reducible fiber, then there is an effectively computable positive lower bound for \(\overline \omega^2\). The authors’ approach also applies to non-semistable cases, and as examples, they compute lower bounds for \(\overline \omega^2\) for the minimal regular models of (1) modular curves \(X_1(N)\) for certain \(N\) (Proposition 6.1) and (2) the Fermat curve of prime exponent \(>3\) (Theorem 6.6).

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G50 Heights
11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
14H25 Arithmetic ground fields for curves

References:

[1] Abbes, Ahmed; Ullmo, Emmanuel, Auto-intersection du dualisant relatif des courbes modulaires \(X_0(N)\), J. Reine Angew. Math., 484, 1-70 (1997) · Zbl 0934.14016
[2] Bosch, Siegfried; L{\`“u}tkebohmert, Werner; Raynaud, Michel, N\'”eron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 21, x+325 pp. (1990), Springer-Verlag, Berlin · Zbl 0705.14001 · doi:10.1007/978-3-642-51438-8
[3] Bost, J.-B.; Gillet, H.; Soul{\'e}, C., Heights of projective varieties and positive Green forms, J. Amer. Math. Soc., 7, 4, 903-1027 (1994) · Zbl 0973.14013 · doi:10.2307/2152736
[4] Burnol, Jean-Fran{\c{c}}ois, Weierstrass points on arithmetic surfaces, Invent. Math., 107, 2, 421-432 (1992) · Zbl 0723.14019 · doi:10.1007/BF01231896
[5] Chinburg, Ted; Rumely, Robert, The capacity pairing, J. Reine Angew. Math., 434, 1-44 (1993) · Zbl 0756.14013 · doi:10.1515/crll.1993.434.1
[6] Cinkir, Zubeyir, Zhang’s conjecture and the effective Bogomolov conjecture over function fields, Invent. Math., 183, 3, 517-562 (2011) · Zbl 1285.14029 · doi:10.1007/s00222-010-0282-7
[7] Cinkir, Zubeyir, The tau constant and the discrete Laplacian matrix of a metrized graph, European J. Combin., 32, 4, 639-655 (2011) · Zbl 1226.05153 · doi:10.1016/j.ejc.2011.01.008
[8] CurillaKuehn C. Curilla and U. K\"uhn, On the arithmetic self-intersection number of the dualizing sheaf for Fermat curves of prime exponent, Preprint (2009). arXiv:math/0906.3891v1
[9] de Jong, Robin, Arakelov invariants of Riemann surfaces, Doc. Math., 10, 311-329 (electronic) (2005) · Zbl 1087.14023
[10] de Jong, Robin, Admissible constants for genus 2 curves, Bull. Lond. Math. Soc., 42, 3, 405-411 (2010) · Zbl 1213.11131 · doi:10.1112/blms/bdp132
[11] de Jong, Robin, Symmetric roots and admissible pairing, Trans. Amer. Math. Soc., 363, 8, 4263-4283 (2011) · Zbl 1304.11056 · doi:10.1090/S0002-9947-2011-05217-7
[12] Faltings, Gerd, Calculus on arithmetic surfaces, Ann. of Math. (2), 119, 2, 387-424 (1984) · Zbl 0559.14005 · doi:10.2307/2007043
[13] Hriljac, Paul, Heights and Arakelov’s intersection theory, Amer. J. Math., 107, 1, 23-38 (1985) · Zbl 0593.14004 · doi:10.2307/2374455
[14] Lang, Serge, Introduction to Arakelov theory, x+187 pp. (1988), Springer-Verlag, New York · Zbl 0667.14001 · doi:10.1007/978-1-4612-1031-3
[15] Liu, Qing, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6, xvi+576 pp. (2002), Oxford University Press, Oxford · Zbl 0996.14005
[16] Liu, Qing, Stable reduction of finite covers of curves, Compos. Math., 142, 1, 101-118 (2006) · Zbl 1108.14020 · doi:10.1112/S0010437X05001557
[17] Mayer, Hartwig, Self-intersection of the relative dualizing sheaf on modular curves \(X_1(N)\), J. Th\'eor. Nombres Bordeaux, 26, 1, 111-161 (2014) · Zbl 1308.14027
[18] McCallum, William G., The degenerate fibre of the Fermat curve. Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math. 26, 57-70 (1982), Birkh\"auser, Boston, Mass. · Zbl 0542.14019
[19] Moriwaki, Atsushi, Lower bound of self-intersection of dualizing sheaves on arithmetic surfaces with reducible fibres, Math. Ann., 305, 1, 183-190 (1996) · Zbl 0845.14015 · doi:10.1007/BF01444217
[20] Soul{\'e}, Christophe, G\'eom\'etrie d’Arakelov des surfaces arithm\'etiques, S\'eminaire Bourbaki, Vol.1988/89, Ast\'erisque, 177-178, Exp.No.713, 327-343 (1989) · Zbl 0766.14015
[21] Sun, Xiaotao, On relative canonical sheaves of arithmetic surfaces, Math. Z., 223, 4, 709-723 (1996) · Zbl 0916.14010 · doi:10.1007/PL00004282
[22] Szpiro, L., Sur les propri\'et\'es num\'eriques du dualisant relatif d’une surface arithm\'etique. The Grothendieck Festschrift, Vol.III, Progr. Math. 88, 229-246 (1990), Birkh\"auser Boston, Boston, MA · Zbl 0759.14018 · doi:10.1007/978-0-8176-4576-2\_9
[23] Ullmo, Emmanuel, Positivit\'e et discr\'etion des points alg\'ebriques des courbes, Ann. of Math. (2), 147, 1, 167-179 (1998) · Zbl 0934.14013 · doi:10.2307/120987
[24] Zhang, Shouwu, Positive line bundles on arithmetic surfaces, Ann. of Math. (2), 136, 3, 569-587 (1992) · Zbl 0788.14017 · doi:10.2307/2946601
[25] Zhang, Shouwu, Admissible pairing on a curve, Invent. Math., 112, 1, 171-193 (1993) · Zbl 0795.14015 · doi:10.1007/BF01232429
[26] Zhang, Shou-Wu, Gross-Schoen cycles and dualising sheaves, Invent. Math., 179, 1, 1-73 (2010) · Zbl 1193.14031 · doi:10.1007/s00222-009-0209-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.