×

Green functions of the spectral ball and symmetrized polydisk. (English) Zbl 1213.32019

Let \(\varOmega_n\) denote the spectral ball, i.e. the set of all \(n\times n\) complex matrices \(A\in\mathcal M_n\) for which \(\rho(A)<1\), where \(\rho(A)\) stands for the spectral radius, \(\rho(A)=\max\{|\lambda|: \lambda\in\text{sp}(A)\}\). The characteristic polynomial \(P_A(t):=\det(tI-A)\) of an \(A\in\mathcal M_n\) may be written in the form \(P_A(t)=t^n+\sum_{j=1}^n(-1)^j\sigma_j(A)t^{n-j}\). Let \(\sigma:=(\sigma_1,\dots,\sigma_N):\mathcal M_n\longrightarrow\mathbb C^n\). Then \(\sigma(\varOmega_n)=\mathbb G_n:=\) the symmetrized polydisk. Let \(\mathcal C_n\) denote the set of all cyclic matrices \(A\in\mathcal M_n\). The main results of the paper are following.
(a) If \(V\in\mathcal C_n\), then \(g_{\varOmega_n}(V,M)=g_{\mathbb G_n}(\sigma(V),\sigma(M))\), \(M\in\mathcal M_n\), where \(g_{\varOmega_n}\) (resp. \(g_{\mathbb G_n}\)) denotes the Green function for \(\varOmega_n\) (resp. \(\mathbb G_n\)). If \(V\notin\mathcal C_n\), then there exists an \(X\in\mathcal M_n\setminus\{0\}\) such that \(g_{\varOmega_n}(V,V+\zeta X)\geq m(\lambda)\log|\zeta|+O(1)\) while \(g_{\mathbb G_n}(\sigma(V), \sigma(V+\zeta X))\leq n(\lambda)\log|\zeta|+O(1)\), where \(m(\lambda)\) (resp. \(n(\lambda)\)) denotes the multiplicity of the eigenvalue \(\lambda\) as a root of the minimal (resp. characteristic) polynomial of \(V\).
(b) For \(A, M\in\varOmega_n\) the following conditions are equivalent: (i) \(g_{\varOmega_n}(A,M)=g_{\mathbb G_n}(\sigma(A), \sigma(M))\), (ii) \(g_{\varOmega_n}\) is continuous at \((A,M)\), (iii) \(g_{\varOmega_n}(\cdot,M)\) is continuous at \(A\).
(c) For \(n\geq3\) we have \(\gamma_{\mathbb G_n}(0;e_{n-1})<A_{\mathbb G_n}(0;e_{n-1})\), where \(\gamma_{\mathbb G_n}\) (resp. \(A_{\mathbb G_n}\)) denotes the Carathéodory–Reiffen (rep. Azukawa) metric for \(\mathbb G_n\).

MSC:

32U35 Plurisubharmonic extremal functions, pluricomplex Green functions

References:

[1] Agler, J.; Young, N. J., The hyperbolic geometry of the symmetrized bidisc, J. Geom. Anal., 14, 375-403 (2004) · Zbl 1055.32010
[2] Aupetit, B., A Primer on Spectral Theory, Universitext (1991), Springer: Springer Berlin, New York · Zbl 0715.46023
[3] Aupetit, B.; Zemánek, J., Local behavior of the spectrum near algebraic elements, Linear Algebra Appl., 52/53, 39-44 (1983) · Zbl 0518.46035
[4] Chen, Y.; Nokrane, A.; Ransford, T., Estimates for the spectrum near algebraic elements, Linear Algebra Appl., 308, 153-161 (2000) · Zbl 0958.15013
[5] Costara, C., The symmetrized bidisc and Lempert’s theorem, Bull. Lond. Math. Soc., 36, 5, 656-662 (2004) · Zbl 1065.32006
[6] Edigarian, A.; Zwonek, W., Geometry of the symmetrized polydisc, Arch. Math. (Basel), 84, 364-374 (2005) · Zbl 1068.32012
[7] Jarnicki, M.; Pflug, P., Invariant Distances and Metrics in Complex Analysis, de Gruyter Exp. Math., vol. 9 (1993), de Gruyter: de Gruyter Berlin, New York · Zbl 0789.32001
[8] Jarnicki, M.; Pflug, P., New examples of effective formulas for holomorphically contractible functions, Studia Math., 135, 3, 219-230 (1999) · Zbl 0953.32012
[9] Jarnicki, M.; Pflug, P., Remarks on the pluricomplex Green function, Indiana Univ. Math. J., 44, 2, 535-543 (1995) · Zbl 0848.31007
[10] Lakatos, P.; Losonczi, L., Polynomials with all zeros on the unit circle, Acta Math. Hungar., 125, 4, 341-356 (2009) · Zbl 1224.26055
[11] Nikolov, N.; Pflug, P.; Zwonek, W., The Lempert function of the symmetrized polydisc in higher dimensions is not a distance, Proc. Amer. Math. Soc., 135, 9, 2921-2928 (2007) · Zbl 1123.32007
[12] Nikolov, N.; Pflug, P.; Thomas, P. J.; Zwonek, W., Estimates of the Carathéodory metric on the symmetrized polydisc, J. Math. Anal. Appl., 341, 1, 140-148 (2008) · Zbl 1135.32014
[13] Nikolov, N.; Thomas, P. J.; Zwonek, W., Discontinuity of the Lempert function and the Kobayashi-Royden metric of the spectral ball, Integral Equations Operator Theory, 61, 3, 401-412 (2008) · Zbl 1154.32003
[14] Ransford, T.; White, M., Spectral characterization of algebraic elements, Bull. Lond. Math. Soc., 33, 77-82 (2001) · Zbl 1045.46028
[15] Thomas, P.; Trao, N. V., Discontinuity of the Lempert function of the spectral ball, Proc. Amer. Math. Soc., 138, 7, 2403-2412 (2010) · Zbl 1196.32013
[16] Vesentini, E., Maximum theorems for spectra, (Essays on Topology and Related Topics (1970), Springer: Springer New York), 111-117 · Zbl 0195.41903
[17] Zwonek, W., Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Diss. Math., 388 (2000) · Zbl 0965.32004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.